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Abstract

The GEM-SA (Gaussian Emulation Machine for Sensitivity Analysis) uses a Gaussian
process prior probability distribution to describe beliefs about an unknown code output, as
a function of the code inputs. The mathematical details behind this Gaussian process model
are outlined below.

1 Standardisation

It is convenient within GEM-SA to work with a standardised set of inputs and outputs. This
allows for a wide range of different codes to be treated within a generic framework, and helps to
prevent numerical problems. The details that are given below all refer to the Gaussian process
model of the transformed inputs and outputs x,y, rather than the original scale, which we call
x′, y′ :

For each input component xi, we set

xi =
x′i − xmin

i

xmax
i − xmin

i

(1)

where xmin
i and xmax

i define the minimum and maximum values of all the ith input components
seen within the training input data.

For the output, we first calculate the sample mean and variance of the output points

my =
1
n

n∑

i=1

y′i (2)

vy =
1

n− 1

n∑

i=1

(y′i −my)2 (3)

(4)

then we let

y =
y′ −my√

vy
(5)
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2 Prior Gaussian process model for the code output

After identifying a suitable input space X ⊆ Rp, the computer code can be represented by a
smooth function f : X 7−→ R, which yields a one dimensional output vector. For any given
x ∈X let h(x) ∈ Rm be a vector of arbitrary regression functions.

The following Gaussian process model is adopted:
[
f(·) | β, σ, r

] ∼ N
(
m(·), σ2c(·, ·)), (6)

where the mean and correlation functions take the form

m(·) = βT h(·),
c(x1, x2) = exp

{−(x1 − x2)T R(x1 − x2)
} ∀ x1, x2 ∈X .

Here the parameters are: the vector of regression coefficients [β1, · · · , βq] ∈ Rq; the variance
σ2 ; and the positive definite roughness matrix R = diag{ri} ∈ Rp,p. The diagonal form of R
implies a correlation structure between any pair f(x1) and f(x2) being insensitive to inputs’
interactions.

The prior specification is completed by

p(β, σ2) ∝ σ−2 (7)

and for each i = 1, . . . , p independently

ri ∼ Exp(0.01) (8)

3 Conditioning on data: The posterior distribution

Running the computer code on a pre-selected design set D = {s1, . . . , sn} ⊂ X yields simula-
tions d =

[
fi(sr)

] ∈ Rn. In light of the assumptions listed above, the joint distribution of the
outcomes in d conditional on nuisance parameters β, σ2 and R is the Normal distribution

[d | β, σ2,R] ∼ Nn

(
Hβ, σ2A

)
, (9)

where HT =
[
h(s1), · · · ,h(sn)

] ∈ Rm,n and A = [c(sr, sl)] ∈ Rn,n. The code may also have a
nugget term, to account for variability in the code data, possibly due to numerical errors in the
solver. In this case the nugget variance 1/λ is added to each diagonal element of A.

Letting tT (·) =
[
c(·, s1), · · · , c(·, sn)

] ∈ Rn, standard Normal theory and some matrix cal-
culus manipulations thus imply the following form for the posterior conditional distribution of
the computer code:

[
f(·) | β, σ2, R,d

] ∼ Nq

(
m?(·), σ2c?(·, ·)), (10)

where

m?(x) = βT
[
h(x)−HT A−1t(x)

]
+ dT A−1t(x),

c?(x1, x2) = c(x1, x2)− tT (x1)A−1t(x2).

The posterior distribution of f(·) conditional on the roughness matrix R alone is found by
integrating (10) with respect to the posterior distribution of β and σ2. This produces the
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following marginal Student’s t posterior process for the computer code f(·), still conditional
upon the roughness matrix R:

[f(·) | R, d] ∼ tn−q

(
m??(·), σ̂2c??(·, ·)). (11)

where

m??(x) = β̂
T
h(x) + (d−Hβ̂)T A−1t(x), (12)

c??(x, x′) = c?(x, x′) +
[
h(x)−HT A−1t(x)

]T (
HT A−1H

)−1 · (13)

·[h(x′)−HT A−1t(x′)
]

(14)

and where β̂ =
(
HT A−1H

)−1
HT A−1d is the GLS estimator of β and σ̂2 = dT {A−1 −

A−1H
(
HT A−1H

)−1
HT A−1}d.

The inferences required for uncertainty and sensitivity analysis are found directly from these
posterior quantities for f(·). For more details of Gaussian process models to analyse computer
models, see for example O’Hagan (2004), Sacks et al. (1989), Kennedy and O’Hagan (2001).
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