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1 A linear combination of code outputs with un-

certain coefficients

Gosling and O’Hagan (2007) considered the linear combination

Y =
n
∑

i=1

αifi(xi), (1)

where αi was a known scalar and fi(xi) was the scalar output of a computer

code run for inputs specified by xi for each i. They considered the case

where the computer code inputs xi were uncertain, the functions fi were

uncertain and there was no training data for most of the functions fi. We

will now consider the case where the scalars αi are also uncertain.

1.1 General results

Before considering the special case of the uncertainty analysis for the Sheffield

Dynamic Global Vegetation Model (SDGVM), we will give results for the

general case described above. Here, we will consider any kind of computer

model that produces a scalar output fi(xi) from some vector of inputs xi.

We will also suppose that the sensitivity of the model output can be broken

down in any way we like according to the different components of uncer-

tainty in the model output. As mentioned above, in general this will include

uncertainty about the inputs xi and uncertainty about the functions fi (due

to code uncertainty and possibly also interpolation uncertainty).
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We would like to know what value we expect Y to take in general. From

equation (1) we see that if we knew the uncertain scalars αi, then the ex-

pectation of Y would be

Efi(Xi)(Y |{αi}) =

n
∑

i=1

αiEfi(Xi)(fi(Xi)), (2)

since fi(Xi) doesn’t depend on αi. Thus, our expectation of Y is now given

by

E{αi}

(

Efi(Xi)(Y |{αi})
)

= E{αi}

(

n
∑

i=1

αiEfi(Xi)(fi(Xi))

)

=

n
∑

i=1

Eαi
(αi)Efi(Xi)(fi(Xi)). (3)

We would also like to know the uncertainty around our expectation for

Y induced by the uncertainty in the scalars αi. From equation (2), we see

that this is given by

Var{αi}

(

Efi(Xi)(Y |{αi})
)

= Var{αi}

(

n
∑

i=1

αiEfi(Xi)(fi(Xi))

)

=

n
∑

i=1

Varαi
(αi)

(

Efi(Xi)(fi(Xi))
)2

+ 2
n−1
∑

i=1

n
∑

j=i+1

Covαi,αj
(αi, αj)Efi(Xi)(fi(Xi))Efj(Xj )(fj(Xj)). (4)

Finally, we would like to know the uncertainty around our expectation for

Y induced by each different component of uncertainty in the model output

fi(xi). Whatever source of model output uncertainty we are interested in,

whether it be input uncertainty, code uncertainty, interpolation uncertainty

or something else, our estimate of the amount of uncertainty induced in Y

by this source can always be expressed as

E{αi}(ES2
(VarS1

(ESrest
(Y |S1, S2, {αi})|S2, {αi})|{αi})) , (5)

where S1 is the source of model output uncertainty we are interested in,

S2 is another source of model output uncertainty and Srest is the remain-
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ing sources of model output uncertainty. From equation (1) and recalling

that fi(Xi) doesn’t depend on αi we see that the above expression can be

simplified to the following form

E{αi}

(

n
∑

i=1

α2
i ES2

(VarS1
(ESrest

(fi(Xi)|S1, S2)|S2))+

2
n−1
∑

i=1

n
∑

j=i+1

αi αj ES2
(CovS1

(ESrest
(fi(Xi)|S1, S2), ESrest

(fj(Xj)|S1, S2)|S2))





=

n
∑

i=1

Eαi

(

α2
i

)

ES2
(VarS1

(ESrest
(fi(Xi)|S1, S2)|S2))+

2

n−1
∑

i=1

n
∑

j=i+1

Eαi,αj
(αiαj)ES2

(CovS1
(ESrest

(fi(Xi)|S1, S2), ESrest
(fj(Xj)|S1, S2)|S2)).

(6)

1.2 Applying these results to the Sheffield Dynamic Global

Vegetation Model

We will now consider the special case of equation (1) where fi(xi) is the

scalar output of the SDGVM and use the general results of equations (3),

(4) and (6) to derive equivalent results for the SDGVM.

From equation (12) of Gosling and O’Hagan (2007) and our equation (3)

we see that the expectation of Y is now given by

E{αi}

(

Eµ1
(E{fi}(M |{Di})|ME , C(ME))

)

=

E{αi}

(

n
∑

i=1

αiEµ1
(Efi

(EXi
(fi(Xi)|fi)|Di)|ME , C(ME))

)

=

n
∑

i=1

Eαi
(αi)Eµ1

(Efi
(EXi

(fi(Xi)|fi)|Di)|ME , C(ME)). (7)

The uncertainty in Y due to uncertainty in the scalars αi, from equa-
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tion (4), is given by

Var{αi}

(

Eµ1
(E{fi}(M |{Di})|ME , C(ME))

)

=

Var{αi}

(

n
∑

i=1

αiEµ1
(Efi

(EXi
(fi(Xi)|fi)|Di)|ME , C(ME))

)

=

n
∑

i=1

Varαi
(αi) (Eµ1

(Efi
(EXi

(fi(Xi)|fi)|Di)|ME , C(ME)))2

+ 2

n−1
∑

i=1

n
∑

j=i+1

Covαi,αj
(αi, αj)Eµ1

(Efi
(EXi

(fi(Xi)|fi)|Di)|ME , C(ME))

Eµ1
(Efj

(EXj
(fj(Xj)|fj)|Dj)|ME , C(ME)). (8)

The uncertainty in Y due to interpolation, from equation (14) of Gosling

and O’Hagan (2007) and our equation (6), is

E{αi}

(

Varµ1
(E{fi}(M |{Di})|ME , C(ME))

)

=

E{αi}

(

n
∑

i=1

α2
i Varµ1

(Efi
(EXi

(fi(Xi)|fi)|Di)|ME , C(ME))+

2
n−1
∑

i=1

n
∑

j=i+1

αiαj Covµ1

(

Efi
(EXi

(fi(Xi)|fi)|Di), Efj
(EXj

(fj(Xj)|fj)|Dj)|ME , C(ME)
)





=

n
∑

i=1

Eαi

(

α2
i

)

Varµ1
(Efi

(EXi
(fi(Xi)|fi)|Di)|ME , C(ME))+

2
n−1
∑

i=1

n
∑

j=i+1

Eαi,αj
(αiαj)Covµ1

(

Efi
(EXi

(fi(Xi)|fi)|Di), Efj
(EXj

(fj(Xj)|fj)|Dj)|ME , C(ME)
)

.

(9)

The uncertainty in Y due to emulation, from equation (16) of Gosling

and O’Hagan (2007) and our equation (6), is

E{αi}

(

Eµ2
(Var{fi}(M |{Di})|MV , C(MV ))

)

=

E{αi}

(

n
∑

i=1

α2
i Eµ2

(Varfi
(EXi

(fi(Xi)|fi)|Di)|MV , C(MV ))

)

=

n
∑

i=1

Eαi

(

α2
i

)

Eµ2
(Varfi

(EXi
(fi(Xi)|fi)|Di)|MV , C(MV )). (10)
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The uncertainty in Y due to input uncertainty, from equation (17) of

Gosling and O’Hagan (2007) and our equation (6), is

E{αi}

(

Eµ3
(E{fi}(V |{Di})|VE , C(VE))

)

=

E{αi}





n
∑

i=1

α2
i Cii + 2

n−1
∑

i=1

n
∑

j=i+1

αiαjCij



 =

n
∑

i=1

Eαi

(

α2
i

)

Cii + 2

n−1
∑

i=1

n
∑

j=i+1

Eαi,αj
(αiαj)Cij , (11)

where

Cii = Eµ3
(Efi

(VarXi
(fi(Xi)|fi)|Di)|VE , C(VE))

and

Cij = Eµ3

(

Efi,fj
(CovXi,Xj

(fi(Xi), fj(Xj)|fi, fj)|Di,Dj)|VE , C(VE)
)

.

This completes the extended uncertainty analysis where the scalars αi

are also uncertain. To use these extended results we need to be able to

calculate: Eαi
(αi), Varαi

(αi), Covαi,αj
(αi, αj),

Eαi

(

α2
i

)

= Varαi
(αi) + (Eαi

(αi))
2

and

Eαi,αj
(αiαj) = Covαi,αj

(αi, αj) + Eαi
(αi)Eαj

(αj).

For the case of analysing the uncertainty in the total biospheric carbon flux

for England and Wales in the year 2000 these quantities have already been

calculated by Cripps et al. (2008).

2 Aggregation for NBP

As noted by Gosling and O’Hagan (2007), in Kennedy et al. (2008), the

linear combination of computer code outputs was

Y =
707
∑

k=1

4
∑

t=1

akγt(yk)ftk(xtk),
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where k was the site number, each site’s coordinates were given by the vector

yk, t was the plant functional type (PFT) index, ak was the known area of

site k, γt(yk) was the proportion of PFT t at site k, which was assumed

known, and ftk(xtk) was the computer code NBP output of PFT t at site

k for input xtk. We will consider the same sum, but where only one set of

weights, the site areas, are assumed known. The PFT proportions at each

site γt(yk) will be considered unknown and their expectations, variances

and covariances were calculated as in Cripps et al. (2008). Here, we have

a double summation, but we could represent it as a single summation as

considered in Section 1, with index i of equation (1) running over all 2828

pairs (t, k) and each αi is the product of a known site weight ak and an

uncertain PFT weight γt(yk). However, although the sites have a spatial

structure that could be exploited for interpolation as before, the (t, k) pairs

do not. Furthermore, there is interest not just in the grand total Y but also

in the site NBP aggregated over PFTs,

Y·k =

4
∑

t=1

γt(yk)ftk(xtk),

and in each PFT’s contribution to the total NBP, aggregated over England

and Wales,

Yt· =
707
∑

k=1

akγt(yk)ftk(xtk).

Although the methods developed earlier do not apply to the double sum-

mation, they apply to a single summation over t or over k, and this gives us

two ways to quantify uncertainty in Y . We can first analyse the uncertainty

in each Y·k and then in

Y =
707
∑

k=1

akY·k.

Alternatively, we could first analyse the uncertainty in each Yt· and then in

Y =

4
∑

t=1

Yt·.

In this report, we used the latter approach to quantify the uncertainty in

the grand total Y .
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2.1 Aggregating over PFTs

2.1.1 General results

We can analyse the uncertainty in each Y·k using the earlier results of Sec-

tion 1.1 for a single summation, but with index i of equations (1) to (6)

replaced by t, n replaced by 4, αi replaced by γt(yk) and fi(xi) replaced by

ftk(xtk).

2.1.2 Application to the SDGVM

Thus, from equation (7) we see that the expectation of Y·k is given by

4
∑

t=1

Eγt(yk)(γt(yk))Eµ1
(Eftk

(EXtk
(ftk(Xtk)|ftk)|Dtk)|ME , C(ME)).

From equation (8) we see that the uncertainty in Y·k due to uncertainty

in the scalars γt(yk) is given by

4
∑

t=1

Varγt(yk)(γt(yk))(Eµ1
(Eftk

(EXtk
(ftk(Xtk)|ftk)|Dtk)|ME , C(ME)))2

+2

3
∑

t=1

4
∑

t′=t+1

Covγt(yk),γt′(yk)(γt(yk), γt′(yk))Eµ1
(Eftk

(EXtk
(ftk(Xtk)|ftk)|Dtk)|ME , C(ME))

Eµ1
(Eft′k

(EXt′k
(ft′k(Xt′k)|ft′k)|Dt′k)|ME , C(ME)).

From equation (9) we see that the uncertainty in Y·k due to interpolation

is given by

4
∑

t=1

Eγt(yk)

(

γt(yk)2
)

Varµ1
(Eftk

(EXtk
(ftk(Xtk)|ftk)|Dtk)|ME , C(ME))

+2

3
∑

t=1

4
∑

t′=t+1

Eγt(yk),γt′ (yk)(γt(yk)γt′(yk))Covµ1
(Eftk

(EXtk
(ftk(Xtk)|ftk)|Dtk),

Eft′k
(EXt′k

(ft′k(Xt′k)|ft′k)|Dt′k)|ME , C(ME)), (12)

where

Eγt(yk)

(

γt(yk)
2
)

= Varγt(yk)(γt(yk)) +
(

Eγt(yk)(γt(yk))
)2
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and

Eγt(yk),γt′(yk)(γt(yk)γt′(yk)) = Covγt(yk),γt′ (yk)(γt(yk), γt′(yk))+Eγt(yk)(γt(yk))Eγt′ (yk)(γt′(yk)).

Since kriging is done on each PFT separately (see Gosling and O’Hagan

(2007) Section 3.1), expression (12) in this case simplifies to

4
∑

t=1

Eγt(yk)

(

γt(yk)
2
)

Varµ1
(Eftk

(EXtk
(ftk(Xtk)|ftk)|Dtk)|ME , C(ME)).

From equation (10) we see that the uncertainty in Y·k due to emulation

is given by

4
∑

t=1

Eγt(yk)

(

γt(yk)
2
)

Eµ2
(Varftk

(EXtk
(ftk(Xtk)|ftk)|Dtk)|MV , C(MV )).

From equation (11) we see that the uncertainty in Y·k due to input

uncertainty is given by

4
∑

t=1

Eγt(yk)

(

γt(yk)
2
)

C
(k)
tt + 2

3
∑

t=1

4
∑

t′=t+1

Eγt(yk),γt′ (yk)(γt(yk)γt′(yk))C
(k)
tt′ ,

where

C
(k)
tt = Eµ3

(Eftk
(VarXtk

(ftk(Xtk)|ftk)|Dtk)|VE , C(VE))

and

C
(k)
tt′ = Eµtt′

(

Eftk,ft′k
(CovXtk ,Xt′k

(ftk(Xtk), ft′k(Xt′k)|ftk, ft′k)|Dtk,Dt′k)|CEtt′
, C(CEtt′

)
)

.

2.2 Aggregating over sites

2.2.1 General results

Similar to analysing the uncertainty in each Y·k, we can analyse the uncer-

tainty in each Yt· using the earlier results for a single summation, but with

index i of equations (1) to (6) replaced by k, n replaced by 707, αi replaced

by akγt(yk) and fi(xi) replaced by ftk(xtk). We then just need to simplify
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the resulting expressions slightly by using the fact that

Eαi
(αi) = Eγt(yk)(akγt(yk)) = akEγt(yk)(γt(yk)),

Varαi
(αi) = Varγt(yk)(akγt(yk)) = a2

k Varγt(yk)(γt(yk)),

and

Covαi,αj
(αi, αj) = Covγt(yk),γt(yk′ )

(akγt(yk), ak′γt(yk′))

= akak′ Covγt(yk),γt(yk′ )
(γt(yk), γt(yk′)).

2.2.2 Application to the SDGVM

Thus, from equation (7) we see that the expectation of Yt· is given by

707
∑

k=1

Eγt(yk)(akγt(yk))Eµ1
(Eftk

(EXtk
(ftk(Xtk)|ftk)|Dtk)|ME , C(ME))

=

707
∑

k=1

akEγt(yk)(γt(yk))Eµ1
(Eftk

(EXtk
(ftk(Xtk)|ftk)|Dtk)|ME , C(ME)).

(13)

From equation (8) we see that the uncertainty in Yt· due to uncertainty

in the scalars γt(yk) is given by

707
∑

k=1

Varγt(yk)(akγt(yk))(Eµ1
(Eftk

(EXtk
(ftk(Xtk)|ftk)|Dtk)|ME , C(ME)))2

+2

706
∑

k=1

707
∑

k′=k+1

Covγt(yk),γt(yk′ )
(akγt(yk), ak′γt(yk′))Eµ1

(Eftk
(EXtk

(ftk(Xtk)|ftk)|Dtk)|ME , C(ME))

Eµ1
(Eftk′

(EXtk′
(ftk′(Xtk′)|ftk′)|Dtk′)|ME , C(ME))

=
707
∑

k=1

a2
k Varγt(yk)(γt(yk))(Eµ1

(Eftk
(EXtk

(ftk(Xtk)|ftk)|Dtk)|ME , C(ME)))2

+2
706
∑

k=1

707
∑

k′=k+1

akak′ Covγt(yk),γt(yk′ )
(γt(yk), γt(yk′))Eµ1

(Eftk
(EXtk

(ftk(Xtk)|ftk)|Dtk)|ME , C(ME))

Eµ1
(Eftk′

(EXtk′
(ftk′(Xtk′)|ftk′)|Dtk′)|ME , C(ME)).

From equation (9) we see that the uncertainty in Yt· due to interpolation
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is given by

707
∑

k=1

Eγt(yk)

(

(akγt(yk))2
)

Varµ1
(Eftk

(EXtk
(ftk(Xtk)|ftk)|Dtk)|ME , C(ME))

+2
706
∑

k=1

707
∑

k′=k+1

Eγt(yk),γt(yk′ )
(akγt(yk)ak′γt(yk′))Covµ1

(Eftk
(EXtk

(ftk(Xtk)|ftk)|Dtk),

Eftk′
(EXtk′

(ftk′(Xtk′)|ftk′)|Dtk′)|ME , C(ME))

=

707
∑

k=1

a2
kEγt(yk)

(

γt(yk)
2
)

Varµ1
(Eftk

(EXtk
(ftk(Xtk)|ftk)|Dtk)|ME , C(ME))

+2

706
∑

k=1

707
∑

k′=k+1

akak′Eγt(yk),γt(yk′ )
(γt(yk)γt(yk′))Covµ1

(Eftk
(EXtk

(ftk(Xtk)|ftk)|Dtk),

Eftk′
(EXtk′

(ftk′(Xtk′)|ftk′)|Dtk′)|ME , C(ME)),

where

Eγt(yk),γt(yk′ )
(γt(yk)γt(yk′)) = Covγt(yk),γt(yk′ )

(γt(yk), γt(yk′))+Eγt(yk)(γt(yk))Eγt(yk′ )
(γt(yk′)).

From equation (10) we see that the uncertainty in Yt· due to emulation

is given by

707
∑

k=1

Eγt(yk)

(

(akγt(yk))2
)

Eµ2
(Varftk

(EXtk
(ftk(Xtk)|ftk)|Dtk)|MV , C(MV ))

=
707
∑

k=1

a2
kEγt(yk)

(

γt(yk)
2
)

Eµ2
(Varftk

(EXtk
(ftk(Xtk)|ftk)|Dtk)|MV , C(MV )).

From equation (11) we see that the uncertainty in Yt· due to input un-

certainty is given by

707
∑

k=1

Eγt(yk)

(

(akγt(yk))2
)

C
(t)
kk +2

706
∑

k=1

707
∑

k′=k+1

Eγt(yk),γt(yk′ )
(akγt(yk)ak′γt(yk′))C

(t)
kk′

=

707
∑

k=1

a2
kEγt(yk)

(

γt(yk)
2
)

C
(t)
kk +2

706
∑

k=1

707
∑

k′=k+1

akak′Eγt(yk),γt(yk′ )
(γt(yk)γt(yk′))C

(t)
kk′ ,

(14)
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where

C
(t)
kk = Eµ3

(Eftk
(VarXtk

(ftk(Xtk)|ftk)|Dtk)|VE , C(VE))

and

C
(t)
kk′ = Eµ3

(

Eftk,ftk′
(CovXtk,Xtk′

(ftk(Xtk), ftk′(Xtk′)|ftk, ftk′)|Dtk,Dtk′)|VE , C(VE)
)

.

Kennedy et al. (2008) approximated C
(t)
kk′ by ρt

√

C
(t)
kk C

(t)
k′k′ , where ρ1 = 0.051,

ρ2 = 0.012, ρ3 = 0.006 and ρ4 = 0.182 for grassland, crop, DBL and ENL,

respectively.

2.3 Aggregating over sites and PFTs

2.3.1 General results

In the previous section, we gave results that allow us to quantify the un-

certainty in each Yt·. We now need to aggregate over PFTs to obtain the

corresponding analysis for Y =
∑4

t=1 Yt·.

Firstly, we would again like to know what value we expect Y to take in

general and an expression for this value that we can compute is given below.

E{γt(yk)}

(

Eftk(Xtk)(Y |{γt(yk)})
)

= E{γt(yk)}

(

4
∑

t=1

Eftk(Xtk)(Yt·|{γt(yk)})

)

=

4
∑

t=1

E{γt(yk)}

(

Eftk(Xtk)(Yt·|{γt(yk)})
)

,

(15)

where the expectations in the above sum are given by equation (3).

Secondly, we would again like to know the uncertainty around our ex-

pectation for Y induced by the uncertainty in the scalar weights {γt(yk)}
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and an expression for this value that we can compute is given below.

Var{γt(yk)}

(

Eftk(Xtk)(Y |{γt(yk)})
)

= Var{γt(yk)}

(

4
∑

t=1

Eftk(Xtk)(Yt·|{γt(yk)})

)

=

4
∑

t=1

Var{γt(yk)}

(

Eftk(Xtk)(Yt·|{γt(yk)})
)

+

2

3
∑

t=1

4
∑

t′=t+1

Cov{γt(yk)},{γt′ (yk′)}

(

Eftk(Xtk)(Yt·|{γt(yk)}), Eft′k′(Xt′k′)
(Yt′·|{γt′(yk′)})

)

,

(16)

where the variance terms in the above expression are given by equation (4)

and the covariance terms simplify as follows.

Cov{γt(yk)},{γt′ (yk′ )}

(

Eftk(Xtk)(Yt·|{γt(yk)}), Eft′k′ (Xt′k′)
(Yt′·|{γt′(yk′)})

)

= Cov{γt(yk)},{γt′ (yk′)}

(

Eftk(Xtk)

(

707
∑

k=1

akγt(yk)ftk(Xtk)

∣

∣

∣

∣

∣

{γt(yk)}

)

,

Eft′k′(Xt′k′ )

(

707
∑

k′=1

ak′γt′(yk′)ft′k′(Xt′k′)

∣

∣

∣

∣

∣

{γt′(yk′)}

))

= Cov{γt(yk)},{γt′ (yk′ )}

(

707
∑

k=1

akγt(yk)Eftk(Xtk)(ftk(Xtk)) ,

707
∑

k′=1

ak′γt′(yk′)Eft′k′ (Xt′k′)
(ft′k′(Xt′k′))

)

=

707
∑

k=1

707
∑

k′=1

akak′Eftk(Xtk)(ftk(Xtk)) Eft′k′ (Xt′k′ )
(ft′k′(Xt′k′))Covγt(yk),γt′ (yk′ )

(γt(yk), γt′(yk′)) .

(17)

Finally, we would again like to know the uncertainty around our expecta-

tion for Y induced by each different component of uncertainty in the model

output fi(xi). Similar to equation (5), this can always be expressed as

E{γt(yk)}(ES2
(VarS1

(ESrest
(Y |S1, S2, {γt(yk)})|S2, {γt(yk)})|{γt(yk)})) ,
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which, similar to equation (6), can be simplified to the following form

4
∑

t=1

E{γt(yk)}(ES2
(VarS1

(ESrest
(Yt·|S1, S2, {γt(yk)})|S2, {γt(yk)})|{γt(yk)})) +

2

3
∑

t=1

4
∑

t′=t+1

E{γt(yk)}(ES2
(CovS1

(ESrest
(Yt·|S1, S2, {γt(yk)}),

ESrest
(Yt′·|S1, S2, {γt′(yk)})|S2, {γt(yk)})|{γt(yk)}) , (18)

where the expected variances in the above expression are given by equa-

tion (6) and the expected covariances are often 0 due to independence.

2.3.2 Application to the SDGVM

The estimate of Y from equation (15) is of course just the sum of the esti-

mates of Yt·, which are given by equation (13).

From equation (16), the variance in Y due to uncertainty in the scalars

γt(yk) is given by

Var{γt(yk)}

(

Eµ1

(

E{ftk}(EX(Y |{ftk})|{Dtk})|ME , C(ME)
))

= Var{γt(yk)}

(

Eµ1

(

E{ftk}(EX(Y1· + · · · + Y4·|{ftk})|{Dtk})|ME , C(ME)
))

= Var{γt(yk)}

(

4
∑

t=1

Eµ1

(

E{ftk}(EX(Yt·|{ftk})|{Dtk})|ME , C(ME)
)

)

=
4
∑

t=1

Var{γt(yk)}

(

Eµ1

(

E{ftk}(EX(Yt·|{ftk})|{Dtk})|ME , C(ME)
))

+2
3
∑

t=1

4
∑

t′=t+1

Cov{γt(yk)},{γt′ (yk′ )}

(

Eµ1

(

E{ftk}(EX(Yt·|{ftk})|{Dtk})|ME , C(ME)
)

,

Eµ1

(

E{ft′k′}
(EX(Yt′·|{ft′k′})|{Dt′k′})|ME , C(ME)

))

.

13



The covariance terms in the above expression simplify like in equation (17):

Cov{γt(yk)},{γt′ (yk′ )}

(

Eµ1

(

E{ftk}

(

EX

(

707
∑

k=1

akγt(yk)ftk(Xtk)

∣

∣

∣

∣

∣

{ftk}

)∣

∣

∣

∣

∣

{Dtk}

)∣

∣

∣

∣

∣

ME , C(ME)

)

,

Eµ1

(

E{ft′k′}

(

EX

(

707
∑

k′=1

ak′γt′(yk′)ft′k′(Xt′k′)

∣

∣

∣

∣

∣

{ft′k′}

)∣

∣

∣

∣

∣

{Dt′k′}

)∣

∣

∣

∣

∣

ME , C(ME)

))

= Cov{γt(yk)},{γt′ (yk′ )}

(

707
∑

k=1

akγt(yk)Eµ1
(Eftk

(EXtk
(ftk(Xtk)|ftk)|Dtk)|ME , C(ME)),

707
∑

k′=1

ak′γt′(yk′)Eµ1
(Eft′k′

(EXt′k′
(ft′k′(Xt′k′)|ft′k′)|Dt′k′)|ME , C(ME))

)

=

707
∑

k=1

707
∑

k′=1

akak′Eµ1
(Eftk

(EXtk
(ftk(Xtk)|ftk)|Dtk)|ME , C(ME))

Eµ1
(Eft′k′

(EXt′k′
(ft′k′(Xt′k′)|ft′k′)|Dt′k′)|ME , C(ME))Covγt(yk),γt′ (yk′ )

(γt(yk), γt′(yk′)).

From equation (18), the variance due to input uncertainty is

VarX(Y |{ftk}, {γt(yk)}) = VarX(Y1· + · · · + Y4·|{ftk}, {γt(yk)})

=

4
∑

t=1

Vt +2

3
∑

t=1

4
∑

t′=t+1

CovXt,Xt′
(Yt·, Yt′·|{ftk}, {ft′k}, {γt(yk)}, {γt′ (yk)}),

where

Vt = VarXt(Yt·|{ftk}, {γt(yk)}).

The formula for E{γt(yk)}(Eµ3
(E{ftk}(Vt|{Dtk})|VE , C(VE)) is given by equa-

tion (14). We must now consider the covariance between Yt· and Yt′·. From

Gosling and O’Hagan (2007) this covariance, assuming that emulators at

different sites are independent, is given by the following equation:

CovXt,Xt′
(Yt·, Yt′·|{ftk}, {ft′k}, {γt(yk)}, {γt′ (yk)}) =

707
∑

k=1

a2
kγt(yk)γt′(yk)CovXtk,Xt′k

(ftk(Xtk), ft′k(Xt′k)|ftk, ft′k).
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The expected value of this covariance is thus:

E{γt(yk)},{γt′ (yk)}

(

CovXt,Xt′
(Yt·, Yt′·|{ftk}, {ft′k}, {γt(yk)}, {γt′ (yk)})

)

=

707
∑

k=1

a2
kEγt(yk),γt′ (yk)(γt(yk)γt′(yk))CovXtk ,Xt′k

(ftk(Xtk), ft′k(Xt′k)|ftk, ft′k).

3 Results
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PFT Mean VarLcp VarEm VarInt VarInp VarTot

Grassland 4.3719 0.0076 8.2616 × 10−5 0.0080 0.2296 0.2453

Crop 0.4260 0.0006 5.6355 × 10−5 0.0084 0.0236 0.0327

DBL 1.7998 0.0071 4.7970 × 10−5 0.0056 0.0095 0.0221

ENL 0.8633 0.0043 5.5886 × 10−8 9.9047 × 10−6 0.0006 0.0048

Covariances -0.0091 0.0010 -0.0081

Total 7.4610 0.0105 0.0002 0.0220 0.2642 0.2968

Table 1: Contribution to the mean and variance of total NBP from different
plant functional types and covariances between these types.
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PFT Mean VarEm VarInt VarInp VarTot

Grassland 4.3719 7.7942 × 10−5 0.0079 0.2291 0.2371

Crop 0.4260 5.4876 × 10−5 0.0084 0.0235 0.0320

DBL 1.7998 3.5544 × 10−5 0.0054 0.0088 0.0142

ENL 0.8633 4.1378 × 10−5 9.6324 × 10−6 0.0005 0.0006

Covariances 0.0010 0.0010

Total 7.4610 0.0002 0.0218 0.2630 0.2849

Table 2: The Kennedy et al. (2008) uncertainty analysis using the Cripps
et al. (2008) point estimates of land cover.
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A A step by step guide to physically reproducing

the results of this report from scratch

1. Collect training data Dtk = {(xtk, ftk(xtk))} for the 33 representative

sample sites and 4 PFTs by running the Sheffield Dynamic Global Veg-

etation Model daily version (SDGVMd) at these sites and PFTs for 200

randomly selected inputs xtk. The training data used in this report is given

in the folder SDGVM data on the CD called Keith’s CTCD Work.

2. Use the training data collected in step 1 to build a statistical emulator

for each function ftk by running the GEM-SA software (see http://www.tony

ohagan.co.uk/academic/GEM/index.html) for each data set Dtk. Firstly,

it calculates the mean of expected code output, which in our notation is

Eftk
(EXtk

(ftk(Xtk)|ftk)|Dtk). Secondly, it calculates the variance of ex-

pected code output, which in our notation is Varftk
(EXtk

(ftk(Xtk)|ftk)|Dtk).

Finally, it calculates the meal of total variance in code output, which in our

notation is Eftk
(VarXtk

(ftk(Xtk)|ftk)|Dtk). Note that the GEM-SA source

code would have to be altered in order to build emulators for training data
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from the PFT evergreen needleleaf, as one of the input parameters for this

PFT required special treatment and did not have a Normal prior distribu-

tion.

3. As we only have training data for 33 of the 707 sample sites in England

and Wales, we need to interpolate the emulation results obtained in step 2.

For each PFT t we obtained the following three sets of emulation results:

ME = {Eftk
(EXtk

(ftk(Xtk)|ftk)|Dtk) : k ∈ K},

MV = {Varftk
(EXtk

(ftk(Xtk)|ftk)|Dtk) : k ∈ K},

and

VE = {Eftk
(VarXtk

(ftk(Xtk)|ftk)|Dtk) : k ∈ K},

where K is the set of sites k for which we have training data Dtk. Like

Gosling and O’Hagan (2007), we use ordinary kriging techniques to interpo-

late these sets of results. In order to krige each set of results, it is necessary

to specify a correlation structure between the unknown functions. We find a

suitable correlation structure for each interpolation by fitting several differ-

ent covariance models to the emulation results using the standard variogram

fitting techniques of the S-PLUS package gstat. In our report the chosen cor-

relation structures for ME , MV and VE were denoted by C(ME), C(MV )

and C(VE), respectively.

For k /∈ K, we interpolate ME using the kriging function µ1 to find

values for Eftk
(EXtk

(ftk(Xtk)|ftk)|Dtk). When kriging a set of results, we

allow for uncertainty in the interpolation; hence, we can calculate a mean

result for each unknown function and the uncertainty around that estimate.

We interpolate MV using µ2 and VE using µ3. Doing this for each PFT t

by using the gstat command krige we obtain the following predictions and

prediction variance:

Eµ1
(Eftk

(EXtk
(ftk(Xtk)|ftk)|Dtk)|ME , C(ME)),

Varµ1
(Eftk

(EXtk
(ftk(Xtk)|ftk)|Dtk)|ME , C(ME)),

Eµ2
(Varftk

(EXtk
(ftk(Xtk)|ftk)|Dtk)|MV , C(MV )),

and

Eµ3
(Eftk

(VarXtk
(ftk(Xtk)|ftk)|Dtk)|VE , C(VE)) = C

(t)
kk .
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4. Use the results obtained in step 2 to calculate the following six inter-

PFT expected covariances for the 33 sample sites we collected training data

for in step 1: Eftk,ft′k
(CovXtk,Xt′k

(ftk(Xtk), ft′k(Xt′k)|ftk, ft′k)|Dtk,Dt′k).

Gosling and O’Hagan (2007) showed that these expected covariances could

be calculated using the following approximation:

Eftk,ft′k
(CovXtk,Xt′k

(ftk(Xtk), ft′k(Xt′k)|ftk, ft′k)|Dtk,Dt′k) ≈
{

Eftk+ft′k

[

VarXtk,Xt′k
(ftk(Xtk) + ft′k(Xt′k)|ftk, ft′k) |Dtk,Dt′k

]

−

Eftk
[VarXtk

(ftk(Xtk)|ftk)|Dtk] − Eft′k
[VarXt′k

(ft′k(Xt′k)|ft′k)|Dt′k]
}

/2.

(19)

Before we can use this approximation we need to calculate

Eftk+ft′k

[

VarXtk,Xt′k
(ftk(Xtk) + ft′k(Xt′k)|ftk, ft′k) |Dtk,Dt′k

]

.

This can be done by building an emulator for each sum ftk + ft′k using

GEM-SA.

5. Estimate the six inter-PFT expected covariances for the other 674

sample sites in England and Wales by interpolation. For each pair of PFTs

(t, t′) we obtained the following set of expected covariances in step 4:

CEtt′
=
{

Eftk,ft′k
(CovXtk,Xt′k

(ftk(Xtk), ft′k(Xt′k)|ftk, ft′k)|Dtk,Dt′k) : k ∈ K
}

.

We used the same approach as we did in step 3 to interpolate these six

sets of expected covariances. In our report the chosen correlation structure

for CEtt′
was denoted by C(CEtt′

). For k /∈ K, we interpolate CEtt′
using

the kriging function µtt′ and thus obtain the following prediction for the

expected covariance:

Eµtt′

(

Eftk,ft′k
(CovXtk,Xt′k

(ftk(Xtk), ft′k(Xt′k)|ftk, ft′k)|Dtk,Dt′k)|CEtt′
, C(CEtt′

)
)

.

6. In step 3 it wasn’t possible to calculate the following kriging covari-

ances using the S-PLUS package gstat:

Covµ1
(Eftk

(EXtk
(ftk(Xtk)|ftk)|Dtk), Eftk′

(EXtk′
(ftk′(Xtk′)|ftk′)|Dtk′)|ME , C(ME)).

Instead we calculated these kriging covariances using a program written in
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C by John Paul Gosling to specifically do this task. This program is called

Krige.exe and is given in the folder JP’s Kriging Program on the CD of

my work.

7. Use the results obtained in step 2 to calculate the following 528 inter-

site expected covariances for the 33 sample sites we collected training data

for in step 1: Eftk,ftk′
(CovXtk,Xtk′

(ftk(Xtk), ftk′(Xtk′)|ftk, ftk′)|Dtk,Dtk′).

Analogous to equation (19) in step 4, we have that

Eftk,ftk′
(CovXtk,Xtk′

(ftk(Xtk), ftk′(Xtk′)|ftk, ftk′)|Dtk,Dtk′) ≈
{

Eftk+ftk′

[

VarXtk,Xtk′
(ftk(Xtk) + ftk′(Xtk′)|ftk, ftk′) |Dtk,Dtk′

]

−

Eftk
[VarXtk

(ftk(Xtk)|ftk)|Dtk] − Eftk′
[VarXtk′

(ftk′(Xtk′)|ftk′)|Dtk′ ]
}

/2,

where Eftk+ftk′

[

VarXtk ,Xtk′
(ftk(Xtk) + ftk′(Xtk′)|ftk, ftk′) |Dtk,Dtk′

]

is cal-

culated by building an emulator for the sum ftk + ftk′ using GEM-SA.

8. Use the results obtained in steps 3 and 7 to estimate the following

inter-site expected covariances for the other 674 sample sites in England and

Wales:

C
(t)
kk′ = Eµ3

(

Eftk,ftk′
(CovXtk,Xtk′

(ftk(Xtk), ftk′(Xtk′)|ftk, ftk′)|Dtk,Dtk′)|VE , C(VE)
)

.

This can be done as follows. Let C(t) be the matrix with elements C
(t)
kk′

and C
(t)
K be the submatrix corresponding to k, k′ ∈ K. We need values

for the off-diagonal elements C
(t)
kk′ of C(t) outside C

(t)
K . Like Kennedy et al.

(2008), we approximate these terms using C
(t)
kk′ = ρt

√

C
(t)
kk C

(t)
k′k′ , where the

value of ρt is chosen such that if the same approximation was used for the

off-diagonal elements of C
(t)
K then the sum of all these elements would be

unchanged. This process yielded the following estimated PFT correlations:

ρ1 = 0.051, ρ2 = 0.012, ρ3 = 0.006 and ρ4 = 0.182 for grassland, crop, DBL

and ENL, respectively.

9. Use the data from the land cover map of Haines-Young et al. (2000)

and the confusion matrix of Fuller et al. (2002) to calculate Eγt(yk)(γt(yk)),

Varγt(yk)(γt(yk)), Covγt(yk),γt′ (yk)(γt(yk), γt′(yk)), Covγt(yk),γt(yk′ )
(γt(yk), γt(yk′))

and Covγt(yk),γt′ (yk′ )
(γt(yk), γt′(yk′)), where γt(yk) is the proportion of PFT

t at site k. This can be done using the approach of Cripps et al. (2008). A

MATLAB program for calculating these quantities called sim_spat_prop_main2.m

is given in the folder MatLab Code on the CD of my work.
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10. Use the results obtained in steps 3 and 9 to calculate the expectation

of Y·k for all 707 sample sites in England and Wales, plot a map of these

site expectations to produce the first graph of Section 3, plot the old map

of site expectations by Kennedy et al. (2008) for comparison and plot the

difference between these two maps to produce the second graph of Section 3.

A MATLAB program for doing this called site_nbp2.m is given in the folder

MatLab Code on the CD of my work.

11. Use the results obtained in steps 3 and 9 to calculate the uncertainty

in Y·k due to emulation for all 707 sample sites in England and Wales, and

plot a map of these uncertainties to produce the third graph of Section 3.

A MATLAB program for doing this called site_nbp_em_var2.m is given in

the folder MatLab Code on the CD of my work.

12. Use the results obtained in steps 3 and 9 to calculate the uncertainty

in Y·k due to interpolation for all 707 sample sites in England and Wales, and

plot a map of these uncertainties to produce the fourth graph of Section 3.

A MATLAB program for doing this called site_nbp_int_var2.m is given

in the folder MatLab Code on the CD of my work.

13. Use the results obtained in steps 3 and 9 to calculate the uncertainty

in Y·k due to uncertainty in the land cover proportions γt(yk) for all 707

sample sites in England and Wales, and plot a map of these uncertainties

to produce the fifth graph of Section 3. A MATLAB program for doing this

called site_nbp_lcp_var2.m is given in the folder MatLab Code on the CD

of my work.

14. Use the results obtained in steps 3, 5 and 9 to calculate the uncer-

tainty in Y·k due to input uncertainty for all 707 sample sites in England and

Wales, and plot a map of these uncertainties to produce the sixth graph of

Section 3. A MATLAB program for doing this called site_nbp_input_var2.m

is given in the folder MatLab Code on the CD of my work.

15. Use the results obtained in steps 11 to 14 to calculate the total un-

certainty in Y·k for all 707 sample sites in England and Wales, plot a map

of these uncertainties to produce the seventh graph of Section 3, plot the

old map of site standard deviations by Kennedy et al. (2008) for compari-

son, and plot the difference between these two maps to produce the eighth

and final graph of Section 3. A MATLAB program for doing this called

site_nbp_var2.m is given in the folder MatLab Code on the CD of my

work.
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16. Use the results obtained in steps 3 and 9 to calculate the expectation

of Yt· for all 4 PFTs and then add these 4 expectations together to obtain

the expectation of the grand total Y . This produces the values in the second

column of Table 1. A MATLAB program for doing this called pft_nbp.m is

given in the folder MatLab Code on the CD of my work.

17. Use the results obtained in steps 3, 6 and 9 to calculate the uncer-

tainty in Yt· due to interpolation for all 4 PFTs. A MATLAB program for

doing this called pft_nbp_int_var.m is given in the folder MatLab Code

on the CD of my work.

18. Use the results obtained in steps 3 and 9 to calculate the uncertainty

in Yt· due to emulation for all 4 PFTs. A MATLAB program for doing this

called pft_nbp_em_var.m is given in the folder MatLab Code on the CD of

my work.

19. For each PFT, add the variance of Yt· due to interpolation obtained

in step 17 with the variance of Yt· due to emulation obtained in step 18, to

obtain the variance of Yt· due to emulation and interpolation for all 4 PFTs.

Then add these 4 variances together to obtain the variance of the grand

total Y due to emulation and interpolation. This produces the values in the

fourth column of Table 1.

20. Use the results obtained in steps 3, 8 and 9 to calculate the uncer-

tainty in Yt· due to input uncertainty for all 4 PFTs. This produces the first

4 values of the fifth column of Table 1. A MATLAB program for doing this

called pft_nbp_input_var.m is given in the folder MatLab Code on the CD

of my work.

21. Use the results obtained in steps 3, 6 and 9 to calculate the uncer-

tainty in Yt· due to uncertainty in the land cover proportions γt(yk) for all

4 PFTs. This produces the first 4 values of the third column of Table 1. A

MATLAB program for doing this called pft_nbp_lcp_var.m is given in the

folder MatLab Code on the CD of my work.

22. Use the results obtained in steps 3, 5, 9, 17, 18, 20 and 21 to calculate

the expected covariances between Yt· and Yt′· due to input uncertainty, the

variance of the grand total Y due to input uncertainty, the covariances

between the expectation of Yt· and the expectation of Yt′· due to uncertainty

in the land cover proportions γt(yk), the variance of the grand total Y

due to uncertainty in the land cover proportions γt(yk) and the overall

variance of the grand total Y . This produces the final 2 values of the fifth
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column, the final 2 values of the third column and the final value of the

sixth column of Table 1, respectively. A MATLAB program for doing this

called total_nbp_var.m is given in the folder MatLab Code on the CD of

my work.

23. Finally, complete Table 1 by adding together its third, fourth and

fifth columns to obtain the missing values of the sixth column.
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