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Abstract

A Bayesian spatial model for detecting brain activation in functional neuroimag-
ing (here focusing on functional magnetic resonance imaging [fMRI]) is developed
that inherently trades the local functional response level with its spatial extent. The
model makes no assumptions about the shape or form of activated areas, except that
they are elevated above non-active areas and form contiguous regions as character-
ized by Markov random field prior distributions. The robustness of the model is
tested under a variety of simulated conditions and the model is subsequently ap-
plied to real data from an auditory experiment. An observed secondary low-level
response that occurs globally and is synchronized with the experimental stimulus
necessitates an extension to the model in the form of an additional additive Markov
random field.

Functional magnetic resonance imaging has been playing a major role in neu-
roscience for more than a decade. A whole range of statistical methods have been
developed and adapted in order to analyze the highly multivariate datasets that
are obtained from fMRI experiments. Initially, these approaches were adapted from
existing ones for detecting activated areas in Positron Emission Tomography ex-
periments. However, subsequent methods have been developed that are tailored
specifically for fMRI. Most of these methods tend to focus on performing a separate
analysis (e.g. linear model or parametric curve fitting) at each voxel (3D pixel) in
order to determine the existence or not of a localized brain response to an exper-
imental stimulus. The subsequent spatial stage of these analysis methods tend to
focus on determining a level at which to threshold a 3D map of, for example esti-
mated magnitudes, such that the large number of multiple comparisons is accounted
for. A spatial map showing above-threshold voxels is then usually displayed as a
map of activation.

Instead of level thresholding the map of statistics, we develop a Bayesian product
Markov random field model that places a priori expected constraints on the smooth-
ness of activation patterns. The presence of local activation is then dependent not
only on the level of a statistic at a particular voxel, but also on both the level of
the statistics at nearby voxels and the classification as either “active” or “inactive”
of those same voxels. The main benefit of this approach is that the Bayesian spa-
tial prior distributions provide a framework for detecting active regions much as a
neurologist might; based on posterior evidence over a wide range of spatial scales,
simultaneously considering the level of the voxel magnitudes along with the size of
the elevated area.

Keywords and phrases: Bayesian image analysis, functional Magnetic Resonance
Imaging, Markov chain Monte Carlo, Markov random field.

1 Introduction

Neuro-imaging techniques such as functional magnetic resonance imaging (fMRI) enable
in-vivo measurement and localization of cortical functions in the brain, and the determi-
nation of interactions between various cortical regions. Until the beginning of the previous
decade, only methods with poor spatial localization (e.g. electroencephalography) existed
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to measure cortical activity. The advent of positron emission tomography (PET) in the
1980s provided an indirect way of localizing cortical activity through regional blood flow
measurement. However, PET has very poor temporal resolution and requires subjects to
be injected with small amounts of radioactive material, limiting the general applicability
to research neuroscience.

The subsequent non-invasive technique of functional magnetic resonance imaging (fMRI)
developed rapidly in the early-mid 1990s, providing greater convenience and safety as well
as improved spatial and temporal resolution relative to PET in the detection of cortical
activity. In fMRI, neural activation leads (via neural control of the vasculature) to in-
creased local (oxygenated) blood flow, so as to replace locally consumed oxygen. Since
oxygenated blood has different magnetic properties from de-oxygenated blood, the (over-)
compensating blood flow leads to a measurable change in the MR signal. The response
time course is referred to as the blood oxygenation level dependent (BOLD) hemodynamic
response function (HDR) and this serves as the raw signal in fMRI datasets.

The most widespread statistical analyses for fMRI first estimates response magnitude
parameters at the voxel (3D pixel) level and subsequently inserts these parameter esti-
mates into a spatial method for hypothesis testing (in effect detecting activation). The
dominant method for spatially analyzing parameter maps thresholds the image using the
theory of Gaussian random fields (Worsley, 1994) to determine the voxels that can be
considered active. Little consideration is given in these thresholding methods to the spa-
tial properties of activation patterns except that the threshold is sometimes adjusted to
either only consider voxel groups of at least n contiguous voxels, or a threshold is arbi-
trarily set and the size of the maximally sized supra-threshold region is considered as a
test statistic (Friston, Worsely, Frackowiack, Mazziotta and Evans 1994). We here build
on the basis of voxel-level analysis, but offer a spatial modeling methodology that goes
beyond thresholding techniques for detecting activated areas, by considering the a priori
expected spatial characteristics of activation patterns.

The spatial model presented can intuitively be thought of as estimating the proba-
bility that an elevated area of blood oxygenation is genuine activation in response to a
stimulus by considering the evidence for activation to be a trade-off between the response
level (integrated over the activated area) and its spatial connectedness. This trade-off is
incorporated by using a prior that is the product of a continuous and a binary Markov
random field (MRF) prior, favoring the spatial contiguity of activated regions. (The mul-
tiplication is performed on a voxel by voxel basis.) Using Bayes’ Theorem, this prior is
then combined with information in the data via the likelihood, to make posterior infer-
ences about activation patterns. This has an advantage over many other Bayesian spatial
techniques considered thus far, in that it does not make strong assumptions about the
shape of activated areas. We demonstrate the approach in a fully Bayesian setting to spa-
tially analyze fMRI parameter estimates that have been obtained by the fitting procedure
of Kornak, Haggard and O’Hagan (1999) which is outlined in Section 2.1. However, the
technique presented is general enough to be applied to any kind of parameter estimates
e.g. t-statistics (Frackowiack et al., 1997) or the parameter estimates of Genovese (2000).

During the time we have developed our approach, there have been many other attempts
to spatially model fMRI voxel-level responses via a Bayesian approach e.g. Descombes,
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Kruggel and von Cramon (1998), Hartvig (2002), Gössl, Auer and Fahrmeir (2000), Task-
inen (1999), Rajapakse and Piyaratna (2001), Friston et al. (2003b) and Friston et al.
(2003a). While some of these other approaches implicitly consider spatial extent ver-
sus overall magnitude through either MRF modeling or object recognition analysis, they
do not have the flexibility and simplicity of the present product Markov random field
representation. The flexibility of the model proposed here comes from having no model
constraints on the shape of activations (apart from contiguity) and the model’s simplicity
is derived from the intuitive representation of a binary activation indicator map multiplied
on an element by element basis with a response level map.

The Bayesian model developed here considers the detection of activation in a way
that more closely resembles the approach a neuroscientist might take when looking at
a map of magnitude responses in the brain. Although the neuroscientist will intuitively
search for regions where there is a large change in magnitude of BOLD signal between
stimulus conditions, they will temper their decision as to whether it is likely to represent
genuine activation by whether the area covered by this high signal change is large or
not. Response areas consisting of just a few voxels are considered much less likely to be
genuine activation than a large area of contiguous voxels with the same signal change.
The use of MRF priors to increase the a priori preference for smoother and wider regions
of activation mimics this decision process of trading the response magnitude with the
spatial extent covered when deciding which regions define genuine activity.

In Section 2 we describe the modeling of the temporal biological process for obtaining
response level estimates on a voxel-by-voxel basis. Section 3 develops an initial spatial
fMRI model to analyze the response level estimates. In Section 4, we give the initial
model’s posterior distribution and outline the inference procedure based on that posterior.
Section 5 discusses a simulation study based on the initial model. Section 6 applies the
model to real data while Section 7 applies an extended spatial model to the same real
data that allows for secondary global activation. Finally, Section 8 gives some discussion
and summary.

2 The hemodynamic response function

The archetypal BOLD HDR response to activation is displayed in Figure 1. There is a
small initial dip followed by a large rise that over-compensates for the previous oxygen
depletion brought about by increased blood flow, reaching a peak over the order of 4 to
8 seconds. The HDR then falls at a lower rate than the rise and subsequently dips below
the baseline for a while (the ‘negative overshoot’, usually mis-named ‘undershoot’), before
gradually returning to baseline. This delayed response is characterized by the BOLD HDR
function h(τ), where τ is the time from the onset of activity.

———————————————————–
Figure 1 about here
———————————————————–
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2.1 Parameter extraction

An efficient way to extract signals is to model their archetypal form with a function that
contains few parameters, but that is able to adequately describe the main features in the
signal. The function we adopt to model the BOLD HDR is the Poisson function, a scaled
and shifted form of the mathematical function for the Poisson density equation:

hs(τ) =

{

ys
λτ−1

s e−λs

(τ−1)!
τ = 1, 2, . . . , T − 1

0 τ = 0
(1)

where ys ∈ [−∞,∞] and λs ∈ [0,∞]. This function was fitted to averaged response cycles
by least squares estimation. The voxel response magnitude parameters (scaling factors
ys for each voxel s) were combined to form spatial maps that were analyzed for coherent
spatial variation within the Bayesian model. We only present an outline of the approach
here in order to provide a particular set of parameters for the Bayesian spatial model.
For further details about this non-linear HDR modeling approach and to compare with
alternative functional forms that we have fitted to the HDR, see Kornak et al. (1999) or
Kornak, Haggard and Hall (2000). In order to stabilize parameter estimation, data were
smoothed spatially with a 5 mm full width at half maximum (fwhm) Gaussian kernel;
fwhm is the width of the kernel at half of the height of the maximum.

The HDR fitting procedure has four steps:

1. Estimate the baseline at each voxel using two minutes of resting MRI signal before
and after the experiment. Note that intermediate drift of overall signal is removed
at the pre-processing stage by de-trending (high-pass filtering using low-frequency
Fourier basis functions) in the fMRI statistical package SPM (see e.g. Frakowiack
et al., 1997).

2. Average the data across cycles to produce a ‘mean response’ cycle hs(τ) for each
voxel s.

3. Fit the Poisson curve to each voxel’s mean response cycle using non-linear least
squares estimation.

4. Create a summary map of the parameter magnitude estimates.

These summary map estimates are then used as input into the spatial model.

3 The spatial fMRI parameter model

The objective of the spatial model is to delineate regions of activity responding to the
stimulus and to optimally map the level of responses based on the magnitude parameter
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estimates. We initially propose the following model:

y = z � x + ε (2)

where y is the observed magnitude response map, z is a (unobserved) binary response
indicator map of activation delineating the pattern of activation, x is the activity level
pattern (only relevant in regions that are activated, i.e. where z = 1), ε is the residual error
field and the operator � represents element-by-element multiplication, i.e. for each voxel
s, ys = zsxs +εs. Note that this model may prove adequate for many data sets. However,
the dataset reported in this paper demonstrated a small scale stimulus-locked response in
addition to the standard functionally localized activation. This effect is accounted for in
Section 7 by incorporating a secondary response MRF (v).

The model is applied to the data on a slice-by-slice basis rather than in three dimen-
sions and the discussion below refers to maps of a single slice plane with K = m×n voxels.
Slices may be in any orientation within 3-D space. The choice of slice direction only de-
pends on convenience of registration and visualization. In magnetic resonance imaging,
other things being equal, the signal-to-noise ratio (SNR) depends on neural activation
and voxel volume, because volume determines the strength of the magnetic signal in re-
lation to magnetic background noise. Theoretically available resolution at 3 × 3 × 3 mm
may in practice be set to 4 × 4 × 4 or 3 × 3 × 8 (anisotropic), in order to increase SNR.
In a given imaging plane, between-slice resolution equivalent to within-slice resolution
(isotropy) is not always required. It was considered to be more important to first test the
expression of constraints of the Bayesian model near to the theoretical resolution limit for
a 3 Tesla (T) scanner, i.e. at 3 × 3 mm but with reasonable SNR, than to demonstrate
three-dimensional operation.

When inter-slice distance and slice-thickness are chosen such that voxels form an
isotropic three-dimensional lattice, extension to three dimensions should in principle not
pose any extra difficulties.

3.1 Markov random field prior distributions

In order to perform Bayesian inference in image reconstruction problems, it is necessary
to formulate a prior distribution for the ‘true’ image of interest, in this case z�x. Markov
random fields (MRFs) provide a useful class of models for this purpose. Guyon (1995) pro-
vides an introductory reference to MRFs on lattice networks and Winkler (1995) discusses
their applications within Bayesian image analysis.

In a MRF, the distribution of values that can be taken by a particular pixel in the
field is constrained by local neighborhood probability structure. This leads to a relatively
simple conditional probability distribution at each pixel that only depends (probabilisti-
cally) on neighboring pixel values, and possibly on some global parameters (e.g. global
mean). The neighborhood of a site s is denoted by ∂s, where each site is defined as a
neighbor (or not) of site s, depending on how ‘close’ under some measure it is to site s.

When MRFs are employed as prior distributions in image analysis, they are generally
unable to fully quantify prior expectations of the ‘true image’, but describe a priori
expected characteristics of the image such as the expected smoothness of the true image
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(although they can be used to impose negative correlation too). These priors act like
stochastic kernel smoothing filters, Besag, York and Mollié (1991).

Formally, a random field x is Markov with respect to a neighborhood system ∂ if

π(x) > 0, for all x ∈ X (3)

and π(xs|x−s) = π(xs|x∂s), for all s ∈ S (4)

where −s denotes the set of all pixels other than s. Condition (3) is known as the positivity
condition (Besag, 1974), and is satisfied for all applications here, although Kaiser and
Cressie (2000) point out that this is a stronger condition than is actually necessary.
Condition 4 states that the conditional density for any site s, given the realization of
all other sites, depends only on the site’s neighbors (∂s).

The Hammersley-Clifford Theorem (see Besag 1974 or Cressie 1993) provides an ap-
proach to constructing MRFs, by providing conditions for an MRF which are equivalent
to the standard definition:
x is an MRF with respect to a neighborhood system ∂ if and only if

π(x) > 0, for all x ∈ X (5)

and π(x) = 1
K

exp
{

− 1
T

∑

C∈C VC(x)
}

, for all x ∈ X (6)

where K is the normalizing constant and T is known as the temperature parameter, so
named because of the role it plays in statistical physics. The function VC is the clique
potential of the clique C and depends only on pixel values xs such that s ∈ C. (A
clique is a subset of pixels such that every pixel is a neighbor of every other pixel in
the subset.) Condition 6 states that x has a Gibbs distribution, i.e. it is the product
of exponential functions of clique potentials and therefore, the theorem states that every
Gibbs distribution is an MRF and vice-versa, provided that the positivity condition holds.

The purpose of the smoothing MRF priors used in the spatial fMRI parameter model
has an emphasis slightly different from that typically seen in image reconstruction. For
the fMRI analysis, as in image modeling generally, the objective is to split the voxel
parameter magnitudes into separate constituent parts, i.e. signal (here activation) and
noise. The role of the smoothing priors here, is to describe the smoothness characteristics
of these individual parts and aid separation on that basis. Therefore the location of
activation is determined from two sources of evidence: i) response magnitude level and
ii) smoothness or connectedness properties. This is because activation is expected to
give a higher magnitude signal than noise and also to have broader spatial frequency
characteristics. The smoothing properties of the priors are not fully exploited in their
usual sense, because the original data were spatially smoothed to aid parameter estimation
(see Section 2.1). However, if the parameter estimation procedure is incorporated within
a fully spatio-temporal framework, then the need for pre-smoothing would be removed,
since spatial smoothness constraints on the parameters would be incorporated within their
prior distributions.

The MRF models used here are mainly based on the conditional auto-regressive (CAR)
or auto-Gaussian process, which is a generalization into two dimensions of the conditional
definition for the standard auto-regression time series process and for the auto-Gaussian

7



case used here, the conditions of the Hammersley-Clifford Theorem have been shown to
be satisfied in Besag (1974). Cressie (1993), Ripley (1981, 1988) and Besag (1974) give
further details on the derivation of two-dimensional CAR processes.

In the rest of this Section we detail the individual components of the spatial model
along with their corresponding prior distributions (where required).

The y map

Let y = {ys, s = 1, . . . , K} be the map of voxel BOLD hemodynamic response parameters
to the stimulation paradigm, where y = (y1, . . . , yK)T is the corresponding column vector.
For our purposes, y consists of the estimated Poisson magnitude parameters as obtained
in Section 2.1.

The z field and its prior distribution

The field z = {zs, s = 1, . . . , K} is a hidden binary random field on the same set of sites
(voxels) as the set y, with voxel locations being assigned the values 1 or 0 to indicate the
presence or absence of activity respectively. The z-field provides a summary of location of
activation, which is of interest in determining the existence, location, extent and pattern
shift of activity and acts as a ‘mask’ or ‘switch’ for the x ‘response level’ map (described
later). A similar approach used in texture classification called Double MRF, for switching
between MRFs (as opposed to switching a field on and off, as here) is described in Melas
and Wilson (1997).

We adopt an alternative binary model to the often used auto-logistic model (e.g. Besag
1974) as a prior distribution for z, to impose the required a priori spatial constraint of
‘connectedness’ on the regions of activity. The model incorporates the attribute of spatial
connectedness through a latent continuous random field w, which is then thresholded at
w = 0. Values for z at each voxel of 0 or 1 are allocated depending on whether w is below
or above threshold at the voxel, i.e. zs = Iws>0, s = 1, . . . , K where Iws>0 is the indicator
map for where w > 0. Note that z|w is wholly deterministic and hence the prior for z

is fully defined through the prior for w. This approach has been used by De Oliveira
(2000) in the reverse problem, where the desire is to predict an underlying un-observable
Gaussian random field from observed binary data, and by Weir and Pettitt (1999) to
estimate the strength of directional interaction parameters (and hence auto-correlation)
in fully observed binary spatial lattice processes.

In contrast to the approaches taken in the works cited, w is modeled as an (improper)
intrinsic Gaussian Markov random field (GMRF) of first order:

π(w) ∝ exp

{

−1

2

∑

s∼t

(ws − wt)
2

}

(7)

This distribution for w is the (improper) limiting case of the CAR model corresponding
to a generalization of the random walk in 2D. Strictly speaking, the thresholding of an
intrinsic GMRF field has no meaning, since the impropriety of an intrinsic GMRF leads
to it having an improper flat prior in respect of the level of w, i.e. only the differences
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are defined and the whole field is free to shift up and down. However, when combined
with the information in the data through the product of the prior and likelihood, the
level of w becomes defined (i.e. the marginal distribution for each ws becomes proper,
Besag, Green, Higdon and Mengersen, 1995) and it becomes meaningful to talk about
thresholding w.

The main advantage of using an intrinsic form for w is that there is no need to specify
a prior for the mean level of w, and this freedom is desirable if no prior constraint on the
proportion of activated voxels is required. Consequentially, there is an arbitrariness of
the threshold level which implies that the variance parameter of w is also arbitrary (we
fix var(w) = 1).

The standard pairwise interaction auto-logistic model as a prior for z is foregone here
for two reasons:
Firstly, there are computational difficulties in obtaining the normalizing function of the
probability density for δ|(z and all other model parameters), where δ is the neighbor in-
teraction parameter, in that it is an unknown function of δ. This function would need to
be either approximated at each iteration of the Markov chain Monte Carlo sampling algo-
rithm (see Section 4) or fixed in advance. Apart from approximations being undesirable in
general for obvious reasons, the estimates would have to be made by some approximation
procedure which may have relatively high computational burden (see Green (1996) for a
discussion and Weir (1997) for an approximation procedure).
Secondly, if the pairwise interactions of the auto-logistic model are strong enough to pre-
vent typical realizations of the field from having local noise, then high correlation over
longer ranges sets in, leading to realizations consisting wholly of 1 or 0 values with oc-
casional isolated voxels of the opposite type (Tjelmeland and Besag 1998; Descombes
and Kruggel 1999). Therefore, any posterior inferences (e.g. the number of regions of
activity), based on the auto-logistic model prior for z, may be considerably biased. This
problem has not been completely solved by the model suggested for z here which leads
to a priori realizations which are too noisy (see the simulation example in Appendix A).
Models do exist that produce realizations with the required properties e.g. Tjelmeland
and Besag (1998), Descombes and Kruggel (1999). However, there is a considerable in-
crease in model complexity, which would add too high a cost to the computational burden
here.

The x-field and its prior distribution

The purpose of the x-field is to model the spatially varying response level of regions that
are activated. The values that x takes in non-activated areas are irrelevant in terms of
posterior inference, since in Equation (2), z � x = 0 wherever z = 0, so that y = ε. In
activated voxels, z = 1 so that z is now ‘switching’ the activity on, leading to y = x + ε.
The z map effectively masks x outside activated areas. The x-field is modeled as the
natural logarithm of a proper GMRF of the (first-order) CAR form with constant mean
µ, i.e. log(x) ∼ MV N(µ1, κ2(I − βN)−1), see Cressie (1993) Chapters 6 and 7 where it
is referred to as the conditional Gaussian or auto-Gaussian model.

The initial intention was to model x directly as a CAR process, since the CAR process
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provides a simpler model than taking x as the exponential of a CAR process. In real
data there do occur from time to time regions which respond negatively, i.e. apparently
de-activate reliably although the physiological basis for this is not understood. As a
consequence, posterior realizations of x cross the x = 0 plane in order to accommodate
the negative regions. Permitting x to cross the x = 0 plane creates a difficulty, however,
because z becomes non-identifiable in regions where x is approximately 0. Hence, log x

was subsequently modeled as a CAR process to prevent negative x regions.

π(xs|x−s, µ, κ2, β) =
1√

2πκ2
exp







− 1

2κ2

[

(log xs − µ) − β
∑

r∈∂s

(log xr − µ)

]2






(8)

This ‘log-CAR’ model has the added advantage that the positive tail of the log Gaus-
sian distribution is ‘wider’ than that of the standard CAR. Therefore, the log-CAR model
is more amenable to fitting any extremely high, but possibly relatively small (in terms
of spatial extent), saturated regions of activity. This appears desirable for neuro-imaging
where stimuli and tasks are arranged that are likely to stimulate highly specific brain
systems.

The mean parameter µ controls the mean level of the response parameters and κ2

controls the spatial ‘smoothness’ of the response level. We give examples of the estima-
tion of these parameters through a fully Bayesian approach in subsequent sections, but
it is beyond the scope of this paper to offer a study of optimal prior distributions for
these parameters for determining activation. In any case, these priors will depend on the
particular scanner, stimulus and hypothesis.

Various methods of considering edge effects were tried. However, because edges of the
image were all far outside of the brain, the choice was found to have negligible effect on
inferences regarding activated regions. The torus approach, where voxels at the edge of
the image are considered to be neighbors of voxels at the opposing edge, was therefore
adopted for its relatively simple code.

Hyper-priors for µ, κ2 and β

The hyper-parameters µ, κ2 and β control characteristics of the log CAR MRF that is
used as a prior for x. The variance parameter κ2 influences the level of smoothness in
the underlying CAR process, and β controls the strength of influence that neighboring
pixel values have on each other relative to that of the field’s global mean level µ (in the
intrinsic case (β = 0.25) all influence is placed on the neighboring voxel values). The
forms of the hyper-prior distributions for µ and κ2 are chosen primarily on grounds of
plausibility, given that little is known about the distribution of these parameters. Since
a range of plausible distributional forms exist, the choice is made so that they take a
conjugate form where the corresponding posterior conditional distributions take a known
form and are hence amenable to the Gibbs sampler (although this is not necessary since
the Metropolis-Hastings algorithm can be used even when non-conjugate priors are used
and the normalizing constants of the full conditionals are unknown, Besag et al. 1995).
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The prior distribution for µ is taken to be Gaussian with mean µ1 and variance σ2
1 ,

i.e. µ ∼ N(µ1, σ
2
1).

The prior for κ2 is taken to be inverse gamma (IG(b, a)), where κ2 ∼ IG(b, a) if

π(κ2) ∝ 1

(κ2)a+1
exp

{

− b

κ2

}

(9)

The prior distribution for β is chosen such that 4β is distributed as a beta distribution,
Be(p, q)

π(β) ∝ (4β)p−1(1 − (4β))q−1 (10)

The range of plausible values considered for β is [0, 0.25], although in general β can take
negative values in a CAR process (implying negative first-order spatial correlation).

The choice of µ1, σ2
1, b, a, p and q, will depend on equipment specification, experimental

signal-to-noise ratio (SNR), and empirical information gathered from past experiments
and analysis. Also note that, for significant spatial auto-correlation to exist in x, β must
lie very close to the intrinsic limit of 0.25, Besag and Kooperberg (1995). Therefore, the
choice of p and q will need to reflect this. However, in practice, this can cause problems by
applying too much prior weight close to the intrinsic limit especially if one is interested in
estimation of the MRF parameters; this is not typically the case in fMRI where the main
requirement is the localization and description of regions of activation (see Section 5).

3.2 Formulation of the model likelihood and the ε map

The likelihood π(y|x, z, σ2) in the present model is assumed to take the form
∏K

s=1 π(ys|zs, xs, σ
2), i.e. the ys are assumed to be conditionally independent given z and

x and π(ys|x, z, σ2) = π(ys|xs, zs, σ
2). The conditional distributions π(ys|xs, zs, σ

2) are
taken as i.i.d. Gaussian, N(zsxs, σ

2). That is, the error in the parameter estimates is
assumed to be i.i.d. zero mean Gaussian noise with constant (unknown) variance. The
noise is generated by both the noise in the original voxel time series and the parameter
estimation procedure.

Prior for σ2

The choice of prior distribution for σ2 is taken as IG(b1, a1). The choice of a1 and b1 will
depend on many factors, but will become more precise as more data sets are acquired,
under similar conditions.

4 The posterior distribution and inference

The priors, hyper-priors and the likelihood are combined through Bayes’ theorem. All
hyper-parameters and σ2 are assumed to be a priori mutually independent of each other
and of w and hence z. Also note that z|w = Iw>0 is deterministic and x and w are also
assumed a priori independent. The ensuing full posterior distribution is:
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π(x, z, w, µ, β, κ2, σ2|y) =

π(y|x, z, σ2)π(x|µ, β, κ2)π(w)π(µ)π(β)π(κ2)π(σ2)

∝ 1

(2πσ2)
K

2

exp

{

− 1

2σ2
(x � Iw>0 − y)T (x � Iw>0 − y)

}

[det(I − βH)]
1

2

(2πκ2)
K

2

∏K

s=1 xs

exp

{

− 1

2κ2
(log x − µ1)T (I − βH)(log x − µ1)

}

exp

{

−1

2

∑

<s,t>

(ws − wt)
2

}

π(µ)π(β)π(κ2)π(σ2)

∝ 1

(σ2)
K

2

exp

{

− 1

2σ2

K
∑

s=1

(xsIws>0 − ys)
2

}

[det(I − βH)]
1

2

(κ2)
K

2

∏K

s=1 xs

exp

{

− 1

2κ2

[

K
∑

s=1

(log xs − µ)2 − 2β
∑

<s,t>

(log xs − µ)(log xt − µ)

]}

exp

{

−1

2

∑

<s,t>

(ws − wt)
2

}

π(µ)π(β)π(κ2)π(σ2) (11)

The term
∏K

s=1 xs in the prior for x arises from the Jacobian of the transformation from
x to log x.

For the present model, Markov chain Monte Carlo (MCMC) sampling is used to sam-
ple each random variable in turn from the full posterior distribution. (Note that the
random variables include the individual site location variables of each random field.) We
employ the Gibbs sampler wherever possible and use the Metropolis-Hastings algorithm
for variables for which the full conditional distribution is not easily obtained.

The field w and random variables, σ2, µ and κ2, are sampled using the Gibbs sampler
with single site updating. Derivation of these full posterior conditional distributions is
relatively straight-forward for these variables except in the case of w. Sampling from the
conditional distribution of ws is relatively tricky because the probability density function
is discontinuous at ws = 0 where zs changes its binary value.

π(ws|w−s, y, x, µ, β, κ2, σ2) =

A exp

{

− 1

2σ2
zs(x

2
s − 2ysxs) − 2(ws − w̄s)

2

}

=

{

A exp {−2(ws − w̄s)
2} ws ≤ 0

A exp
{

− 1
2σ2 (x2

s − 2ysxs) − 2(ws − w̄s)
2
}

ws > 0
(12)

We give the derivation of the full conditional distribution for ws in Appendix B and
describe an algorithm to sample from it.

Since the conditional distributions of x and β are of unknown form Gibbs sampling
can not be used and Metropolis-Hastings is consequently employed to sample from the
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conditional distributions. We use random walk Metropolis proposal steps for individual
xs sites and for β (e.g. Besag et al. 1995) with appropriate adjustments at boundary
values.

We used a fully Bayesian approach and based posterior inferences for all parameters
on output from the MCMC algorithm (thereby incorporating all sources of uncertainty).

5 Simulation experiment

We performed a simulation experiment in order to ascertain the level of sensitivity in the
spatial model (2) to hyper-parameter values, hyper-prior distribution choices and signal-
to-noise ratio (SNR). This was assessed under two criteria: i) the quality of parameter
estimates and ii) the plausibility of posterior map estimates with respect to the separation
of z � x and ε.

These simulations were performed with x as a CAR process (as opposed to log x,
which was adopted later, for the reasons stated in Section 3.1). Since x takes the form of
a CAR process, it was possible to use the Gibbs sampler to sample x from the posterior
distribution.

For this simulation experiment, a CAR process for x was simulated on a 20×20 lattice
with a toroidal edge process, i.e. voxels at the edge of the lattice are considered to be
neighbors of pixels at the opposing edge. The parameter values chosen were β = 0.249,
κ2 = 1.0, µ = 5. A mask with a disk of radius 7.5 voxels about the lattice’s center was
applied to the simulated data. All the masked voxels outside the disk, were set to 0, and
the remainder of the CAR process was retained to represent the region of activity z � x,
giving an approximate disk of 172 activated voxels. Three levels of Gaussian i.i.d. noise
σ2 = 0.01, 0.5, 0.1 (high, medium and low SNR respectively) were added and the results
of the simulation experiment were compared for the different SNR cases.

Non-informative improper priors were employed for κ2 and σ2, π(σ2) ∝ 1
σ2 and π(κ2) ∝

1
κ2 . A vague prior, N(0, 100000) was assigned to µ and a variety of prior distributions were
employed for 4β: Be(0, 0) (improper), Be(1, 1), (flat/uniform), and Be(400, 1.5) (strong).
A burn-in sample of 1000 was discarded and a subsequent 3000 samples were used for
posterior inference.

———————————————————–
Figure 2 about here
———————————————————–

Figure 2 shows the resulting maps for the simulated model in the Be(0, 0) case with
σ2 = 0.01. The map of the simulated response data y is shown in panel (a), and the other
panels show the MMSE posterior estimates of the various maps in the model. The x-map
(b) picks up the pattern of the CAR process within the activated region. Moving away
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from the activated area, the x-field tends toward the global mean since the data no longer
play any direct role in influencing the xs values. The z-map (c) accurately demarcates
the region of activity, as expected, given the high SNR. The w-map (d) shows the hidden
intrinsic GMRF which is thresholded to generate z. The z � x-map (e) is the voxel-wise
product map of z and x. This gives the fitted response map and again gives a plausible
fit. The final map of residuals ε (f) is interesting, since the residuals within the area of
activation are of lower magnitude than elsewhere. At first sight this may seem to be a
problem practically, theoretically or both. However, there is no capacity in the model
or in the MMSE estimation procedure to penalize spatially correlated residuals. Here,
the loss function minimizes least squares error subject to the errors being (individually)
normal realizations. Hence, it appears that within the activated area, x is fitting some of
the noise as well as the CAR process.

The posterior maps when employing the Be(1, 1) and Be(400, 1.5) priors appear virtu-
ally identical to the Be(0, 0) case and are therefore omitted. This indicates that posterior
map estimation (of primary interest in determining activation pattern), based on MMSE
estimation, is not sensitive to the choice of prior for β given the current parameter settings
and choice of true activation pattern.

———————————————————–
Table 1 about here
———————————————————–

Table 1 summarizes the effect of the different priors for β on hyper-parameter estima-
tion in the high SNR case (σ2 = 0.01). The marginal posterior mean estimates derived
from the MCMC output for each of the hyper-parameters µ, β, κ2 and σ2 along with the
residual sum of squares (RSS), i.e.

∑K

s=1 εs. The marginal parameter estimates (based
on the 3000 post burn-in samples) of σ2 and κ2 reflect the fact that x is picking up some
of the noise, since κ2 is larger than its simulated value of 1.0 and σ2 is smaller than its
value 0.01. The κ2 and σ2 estimates appear quite robust across the different beta priors
and after testing over a range of start values, we found that the procedure was robust
to different start values for these hyper-parameters except when κ2 was started close to
0. However, note that in the Be(0, 0) case the parameter estimates for β and µ are in-
accurate. In particular, notice that the variance for µ is extremely high. The choice of
prior for β had an interesting effect on the MCMC output for µ and β which can be
seen in the MCMC traces for β and µ when 4β ∼ Be(0, 0) (σ2 = 0.01) in Figure 3. To
understand the behavior of the chains, first note that the improper Be(0, 0) prior for 4β
has a singularity at β = 0.25 giving a relative a priori attraction to this value. When the
sample values of β approach 0.25, the model for x comes close to the intrinsic Gaussian
form Besag and Kooperberg (1995) and the parameter µ becomes non-identifiable; when
β = 0.25, the conditional distribution for µ depends only on its prior distribution. Since a
vague prior has been chosen for µ, the parameter’s MCMC output tends to wander when
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samples of β get close to 0.25. Only when µ returns to a plausible value, is there a chance
of β moving away from 0.25 again. It can be seen from the traces that the variability of
µ is high when β is close to 0.25.

———————————————————–
Figure 3 about here
———————————————————–

For the Be(1, 1) prior, the a priori mass for β toward the extremes has been reduced
and hence there is less tendency for the chain to reach β = 0.25. The mean and median
estimate for β are now of lower magnitude (underestimates as opposed to overestimates)
and the MCMC traces (not shown) exhibit much less of the non-identifiability behavior,
i.e., β was not stuck for long periods at 0.25. The estimates for µ in this case are slight
overestimates. For the Be(400, 1.5) prior, the estimates for β were the closest to the true
value of any of the models. This was to be expected because the mean of the prior for
β had its mean at the correct value. Further, because this prior placed zero mass at
β = 0.25, the non-identifiability problem was virtually non-existent.

The choice of prior for β is important in terms of obtaining sensible parameter esti-
mates for β and µ. However, the results of applying these different Beta priors show that
the existence of some non-identifiability of µ has little effect on the posterior estimates of
the individual maps in the model (which are of primary interest), or on the other hyper-
parameter estimates, κ2 and σ2. Clearly, the non-informative Be(0, 0) prior is unsuitable,
given the extent of the non-identifiability problem for µ. However, the Be(1, 1) prior
appears to give a more practical approach to modeling vague prior knowledge about β.

———————————————————–
Table 2 about here
———————————————————–

Table 2 displays the MMSE posterior parameter estimates for the different levels of
σ2, i.e. 0.01, 0.5, 1.0 in the 4β ∼ Be(1, 1) case. For the higher levels of σ2, these estimates
are inaccurate for all but µ. It appears that at lower SNR levels, the model is unable to
distinguish well between the different sources of signal, i.e. the CAR process and Gaussian
noise. The posterior maps of z and z � x are of high quality in the σ2 = 0.5 case, giving
similar posterior map estimates as those obtained in the σ2 = 0.01 case, but with higher
residuals. However, when σ2 = 1.0 the maps begin to degrade due to uncertainty as to
whether a voxel has a high magnitude value due primarily to true signal or noise.

The MCMC plots of the parameters (not shown) again appear to converge quite
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quickly, i.e. within a few hundred iterations. However, the MCMC chains are explor-
ing an incorrect region of the parameter space, but one which is plausible in terms of the
data. Since the noise in the data is higher than in the previous cases, the joint marginal
distribution of the hyper-parameters will be ‘flatter’. This leads to a higher expectancy
for the MCMC procedure to explore incorrect regions of the parameter space and hence
become stuck in incorrect modes. In this case, the residual variance σ2 is explaining all of
the variance in the response map. This effect can be controlled to some extent by fixing
σ2 to be small for the early iterations. This is employed in analyses of real data herein
and is explained further in Section 6.

The simulation studies have shown that the procedure is capable of reconstructing the
components of the model and estimating the corresponding hyper-parameters at differing
levels of SNR.

As is to be expected, the accuracy of the parameter estimates also decreases as the
SNR is reduced. Indeed the parameter estimates when σ2 was increased to 1.0 were very
poor, although controlling σ2 at the start improves things considerably. It is also to be
expected that uncertainty in the reconstruction increases as the SNR increases. However,
the quality of reconstruction of the individual fields remains relatively high up to σ2 = 0.5,
even though the parameter estimates are not very precise, further indicating that the
model is not very sensitive to perturbation of the hyper-parameter estimates. This means
that the main requirement is met, since inference in fMRI is not particularly concerned
with the MRF hyper-parameters, but with observed characteristics of the reconstructed
fields, e.g. the number, size and location of activated regions.

6 Analysis of real data

We considered datasets acquired within a simple periodic on/off experimental paradigm
(although the method is readily extended to consider more complex experimental paradigms).
Specifically, the data considered here were acquired on a 3T scanner, in an on/off paradigm
with 32 cycles. Each cycle contained 7s of speech (on), followed by 28s of silence (off).
The subject was requested to attend to the speech but no response was required. A
further 2 minutes of imaging in the silent condition were acquired both before and after
the experiment, in order to obtain stable baseline estimates. Images were acquired at
584 time points with an inter-scan interval of 2.33 seconds. Each image has 8 parallel
coronal slices, consisting of regular lattices with 256 × 256 voxels. Voxel dimensions are
3 × 3 × 8 mm, the 8 mm being the distance between slices.

We initially adopted the spatial model (2); in Section 7 we give an extension to this
model that leads to superior results. The Poisson magnitude parameter estimates for
individual axial slices crossing through primary auditory cortex were analyzed for two
subjects. We considered one slice from subject 1 for the application of this first model
and for the extended model, two neighboring slices from subject 1 and one slice from
subject 2.

In order to prevent the possibility of negative values for x, log x was modeled as a CAR
process as outlined in Section 3.1. Other differences for this model compared with that
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used in the simulation experiment were as follows: µ was the mean of log x, started at
3.5 ≈ log 33 and a more precise prior variance on µ (σ2

1 = 0.5) than previous was adopted
for reasons discussed below. The prior for β was that used in the informative simulations,
i.e. Be(400, 1.5) (see Section 5). This was required in order to prevent prevent β gradually
going to 0, which would lead to x becoming a constant field with κ2 non-identifiable. (Note
that these severe restrictions are required because the model is inadequate for these data
as shown later in this section.) As in the x ∼ CAR restoration, σ2 was again kept low
at 0.001 for an initial set of samples, to allow κ2 to settle down. The x-field was started
as a constant field at approximately the maximum of the observed values, i.e. 35, for the
reasons stated below.

The parameter start values of the MCMC sampling procedure were as in the simu-
lation experiment, except that x was started at 20, corresponding to just over half of
the maximum estimated magnitude parameter of 35.0, and the σ2 parameter was kept
constant at 0.01 for the first 100 iterations and subsequently was sampled in the normal
manner via the Gibbs sampler. Note that the prior distributions we use are incomplete in
that they do not fully characterize prior knowledge of activation patterns (see Section 3),
and therefore regions of the posterior will exist that are feasible in terms of the data but
do not give realistic realizations (in terms of our true prior expectations).

The step size h for the uniform proposal distributions for β, xs were chosen to give an
acceptance rate of between 30% and 70%, as advised by the rule-of-thumb suggested by
Besag et al. (1995).

In this analysis, σ2 was initially kept constant in the MCMC sampling process in
order to let the other parameters settle into a sensible region of the parameter space. If
σ2 was not fixed at the start of the chain its MCMC sample value would increase rapidly,
so that it could explain all of the variation. The corresponding value for κ2 shrinks (so
that virtually no fine scale variability is explained by the CAR process), with x taking
a near constant value approximately equal to the log of the starting value for µ. In this
situation (i.e. when σ2 explains all of the fine scale spatial variance), the z-map indicates
1 in strong regions of activity, with x taking up part of the response value (approximately
equal to µ) and with the difference being absorbed through σ2. The β parameter plays no
significant role in the posterior mass and is free to wander. Effectively, the sampler has
entered a mode that does not capture the essential structure, from which it is difficult to
escape. When the parameters of the model are constrained in the above stated manner,
the MCMC traces of the hyper-parameters all appear to behave well.

An alternative strategy for stopping σ2 from exploding would be to put a strong prior
on σ2. This seems undesirable in the present context, since such a prior would bias
posterior estimates toward the ‘center’ of the prior distribution (for which currently no
evidence exists). The extent of such a bias was tested using the inverse gamma prior
for σ2, which is conjugate in the model. It was found that unrealistically strong prior
information was required to keep σ2 under control.

———————————————————–
Figure 4 about here
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———————————————————–

Figure 4 displays the original Poisson parameter estimates along with the posterior
estimates of the fields in the model. The posterior estimate of x (panel b) provided the
required kind of field. It fitted undulation in the activated area in the left hemisphere,
but stayed largely flat outside the area of high activity and away from x = 0 (which was
guaranteed when strong prior information was given for the location of µ and when x was
started well away from x = 0). However, the residuals had a spatially correlated structure
and had a high magnitude (which can be seen in panel f). Note that the v map could not
simply be an artifact of the spatial smoothing in the data because the smoothing kernel
only has significant mass for the width of about 3 or 4 voxels. Therefore the main region
of activation was not being smoothed to the extent of influencing the whole brain.

The spatially correlated effect invites an extension of the Bayesian model, which in-
troduces a second CAR MRF that acts across the whole brain. Hitherto, functional
neuroimaging has been largely confirmatory in character, with a concentration on the
avoidance of false positive errors via adjustments for multiple testing. Activation effects
synchronized to the stimulation/task cycles have been confirmed initially in brain areas
known from other types of data (e.g. functional deficits from brain lesions), to be in-
volved in functions plausibly related to stimulus analysis or task performance. The issues
raised by unexpected forms of ‘activation’ have largely been deferred. The spatially cor-
related residual structure is stimulus-locked but appears globally (i.e. including regions
not thought to be functionally relevant to the task/stimulation).

In the context of the spatial model we have considered so far, the spatially correlated
residual structure explains why µ needs a relatively strong prior and why x has to be
started far from x = 0. There are effectively two separate correlation patterns (on different
scales) which x can try to fit, so it was necessary to use strong priors to prevent x fitting
the global, but lower magnitude, correlation structure.

7 Adding the intermediate v-field to the Bayesian

model

In order to take into account the spatially correlated intermediate response, the spatial
model in Equation (2) is extended to that of Equation (13)

y = z � x + v + ε (13)

where a further Markov random field v has been added to represent this secondary ac-
tivation. The other components are unchanged. The new v-field is modeled a priori by
a CAR process. The hyper-parameters for this CAR process are λ (mean), γ (interac-
tion) and η2 (variance) which all have hyper-priors of the same format as those given to
the corresponding hyper-parameters of the log x process. The x, v and w processes are
assumed to be mutually independent a priori.
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The MCMC sampling procedure described in Section 4 is extended to incorporate the
v-field and its hyper-parameters. The sampling procedure for these hyper-parameters is
similar to that of the corresponding hyper-parameters in the log x process, and indeed the
same subroutines are used for the equivalent hyper-parameters of the x- and v-fields.

A further change to the sampling code is brought about by the addition of the v-field
terms into the likelihood , i.e. the term in the exponential of the likelihood changes from
(x�z−y)T (x�z−y) for the model in Equation (2), to (x�z+v−y)T (x�z+v−y). Any
variables which have the likelihood entering into their conditional distribution require a
corresponding adjustment in their full conditionals.

7.1 Application of the new model

The starting values and prior distributions are given in table 3. The hyper-prior distribu-
tions are more specific than those used in Section 5; the addition of a further MRF into
the model has increased the sensitivity to the starting values and choice of hyper-priors.
A burn-in period of 20000 iterations was employed with a subsequent sample of 60000
iterations used for inference. The σ2 chain is fixed for a longer period of 500 iterations
(at 0.01), as the increase in number of parameters leads to the other hyper-parameters
potentially requiring a longer time to become stable within the correct region of their
joint sub-space.

———————————————————–
Table 3 about here
———————————————————–

In general, for known auditory cortical areas we expect activation at either or both
left and right extremes about half way up the coronal slice, together with the less reliable
possibility of showing activation at the bottom of the mid-brain. Two subjects’ data are
presented illustrating this expected activation, one at good SNR and the other at poor.

Samples from the posterior

Subject 1 analysis.

In figure 5, the MCMC appears to have converged with the conventional activity assigned
to z � x, and the secondary activity to v. The figure shows the Poisson parameter map
and the MMSE estimates for the model maps of slice 1, subject 1. The starting values
and hyper-parameters used are listed in table 3.

———————————————————–
Figure 5 about here
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———————————————————–

After exploring many combinations, it appeared that the structure of posterior es-
timate maps are largely independent of either the starting values or hyper-priors. In
general, strong priors had to be placed on µ, β and κ2 (as well as σ2). The x-field param-
eters had to be controlled such that the x-field did not become ‘too flexible’ and have the
capability of fitting the v-response. The hyper-priors for β and σ2 were truncated such
that β could not go above 0.2495 and σ2 could not go above 3.0. The first restriction was
to prevent µ becoming non-identifiable. The problem in that case, is that x approached
x = 0 in non-activated regions and hence false regions of activity were indicated. The
second restriction, that on σ2, prevented the (rare) event of the MCMC jumping to a
different mode where σ2 would explain the majority of spatial variation.

The final residual error map in figure 5 (and later maps of residuals in this chapter)
appears flat. Of course, the residuals are not totally flat, but the flat image reflects the
fact that the residual magnitudes were small compared to the magnitudes of the other
fields. When re-scaled as in figure 6, it can be seen that although much of the spatial
structure had been removed, we cannot say that it is spatially uncorrelated. This is not
surprising because, spatially correlated residuals are not penalized in the decision process
for MMSE, which is based on a least squares error loss function.

———————————————————–
Figure 6 about here
———————————————————–

Table 4 lists the marginal MCMC output mean, median and standard deviations for
the hyper-parameters µ, β, κ2, σ2, λ, γ and η2, as well as the total RSS for slice 1 of
subject 1. The parameter estimates all seem reasonable, but any interpretation has to be
considered with care because of the high precision of the hyper-priors.

———————————————————–
Table 4 about here
———————————————————–

In order to examine the variability of the MMSE map estimates, samples of each of
z � x + z � v and v (not shown) were examined. Some variability in the maps existed,
but this was quite small. This appears to reflect the high SNR content and consequent

20



specificity in the parameter maps.

———————————————————–
Figure 7 about here
———————————————————–

Figure 7 shows the MMSE maps for slice 2 of subject 1. The results again separate
the parameter estimates into their constituent components (z � x, v and ε) in a coherent
manner and conventional activation can be observed here bilaterally along with slight
activation in the lower mid-brain. The starting parameters and hyper-prior distributions
were all kept the same as those used for slice 1.

Subject 2.

Figure 8 shows the MMSE maps for a single slice examined in subject 2, with the starting
parameters and hyper-prior distributions as used in subject 1, except that µ was started
at 2.0 (and is given a hyper-prior with mean 2.0) and the x-field is started at 24.0. The
reason these changes were made was because the magnitude parameter estimates were in
general smaller and the reduced start values enabled the x-field values of the MCMC to
reach the correct region more quickly. This was required to prevent the chain entering
an incorrect mode; note that fMRI response magnitude is recorded on an arbitrary scale
and hence some such calibration of the x-field is necessary. Despite much lower SNR in
the data compared with subject 1, the posterior maps appear coherent, with detected
activation in right auditory cortex and the lower mid-brain. Note that the v-field effect
displayed in panel d is less evident than in subject 1.

———————————————————–
Figure 8 about here
———————————————————–

Table 5 gives the MMSE parameter estimates for the slice of subject 2. The reduced
η2 estimate reflects the lesser spatial structure in the v-field. For parameter maps such
as this one, where there is no strong secondary field it would be better to stick with the
more parsimonious model of Section 6. The lower SNR of subject 2 was further reflected
in sample maps from the posterior of z � x + z � v and v which had higher variability
than those of subject 1. However, the visible variability between sampled maps was still
not high.
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———————————————————–
Table 5 about here
———————————————————–

8 Discussion

8.1 Sensitivity of hyper-parameters

The general high sensitivity of the hyper-parameter values is likely to be due to the
limited capacity of pairwise structure models to differentiate second-order structure (i.e.
the structure of second differences) in the parameter maps. In particular, separation of
the x and v components of the image would be more robust if their respective levels
of smoothness helped determine more directly the deconvolution of the two fields. The
conditional specification of the CAR prior models used for log x and v is mis-leading in this
respect. When β is close to 0.25, Equation (8) implies that the voxel response has highest
conditional probability mass when it is the average of its neighboring values (ignoring
the consequentially small effect of the overall mean of the process), i.e. it depends on
how well it interpolates the neighborhood. This appears to define smoothness in terms of
second-order structure. However, the joint CAR distribution only depends on singleton
and pairwise functions and hence the second-order structure is not controlled by the CAR
process other than through the mean function.

For example, consider the intrinsic CAR case. The individual conditional distributions
seem to imply that configurations have maximum probability of occurring if pixels are
the average of their neighbors (i.e. have a smooth second-order structure). However,
the posterior joint distribution implies that only the sum of the pairwise differences is
relevant to the probability of a configuration, which does not explicitly encourage smooth
second-order structure.

For the fMRI parameter maps, large smoothly rising and falling bumps need to be
distinguished from undulation of lower magnitude and higher spatial frequency. The
current method cannot very well differentiate the two textures, because the effective
squared sum of pair-wise differences may be similar.

To obtain further intuitive understanding of why the conditional form can be mislead-
ing, consider any path of pixels in the lattice for which the steps in the path are made
up of first-order neighbors. If the path eventually returns to its starting point it forms
a closed loop. Clearly, there are a large number of different closed loops for lattices of
substantial size. The pixel values along the loop depend conditionally only on their direct
neighbors, however, the spatial structure imposes further conditions, since all the pairwise
differences in closed loops have to sum to 0.

MRF models for continuously distributed magnitude data which aim to directly model
second-order spatial structure would incorporate second-order clique functions (at some
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increased computational cost), which incorporate second-order structure directly, into the
joint distribution. This is a topic for future research.

8.2 Alternative model formulations

If the v- and x-effects are not additive in the way the model assumes, an alternative
formulation to the y = z�x+v+ ε model used so far, could be y = z�x+(1−z)�v+ ε.
In this model the v-field is ‘switched off’ in regions where conventional activation occurs.

However, when the (1 − z) � v model was implemented via some minor changes to
the MCMC code, there was only a negligible difference to the posterior maps. The
robustness to the choice between these two models is clearly desirable. The original
additive y = z � x + v + ε is retained for reasons of simplicity and practicality, in the
absence of any published physiological evidence for the preference of either model.

Adoption of a fully spatio-temporal approach would enable the potential of incorporat-
ing an additive v-field with a delay at each voxel location differing from that of the x-field.
This would lead to a more ‘genuine’ additivity of v and z � x, though at considerably
higher computational cost.

8.3 Conclusion

The full Bayesian model as developed in this report incorporates spatial constraint for
the estimation of stimulus response patterns in fMRI experiments via the use of Markov
random field models for prior distributions There are two levels at which the MRF models
operate to provide a priori spatial smoothness. The first is at the level of the parameter
estimates (within the continuous x-field) which is little different in its force from classi-
cal/deterministic smoothing via filters, except that it is placed within the probabilistic
framework of MRFs. The hyper-parameters for the x-field CAR model can be seen as
corresponding to the width/shape of smoothing kernels in the classical framework and
can similarly be optimized for particular dataset resolutions or types of problem. The
second is at the decision level for the existence of activity within voxels, i.e. for the
binary z-field. The MRF prior in this case spreads the decision process to take into ac-
count the classification as active or inactive of neighboring voxels. This implements the
assumption that a more functionally sensitive analysis will result by imposing a model
in which the nature of the hemodynamic response cannot be highly local (true) and is
broadly categorical rather than continuous in nature (largely true unless special designs
are used to reveal proportional effects). This handles data on the magnitude of activation
in a consistent and near-optimal way. This second point would normally be left to the eye
of the radiologist, radiographer or neuroscientist and be allowed as “interpretation” in a
clinical context. This is a “skilled” reading of the activated area rather than the individ-
ual magnitude parameters. In a scientific study this is the aspect of activation that it is
difficult to specify and data-reduce in any objective way for the subsequent evaluation of
the presence (or absence) of regional activity relating to physiological stimulus.

The potential to fit entirely positive or negative Poisson curves (via the scaling pa-
rameter ys), but with variable delays (through the mean parameter λs), has led to the
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discovery of a secondary global signal response which is locked to the stimulus paradigm.
It is likely that an improved magnitude resolution from using a variable delay, similar
to that demonstrated when fitting functions permitting (and generally having) both a
positive and negative excursion, is responsible for enabling this finding. Its physiological
significance is unclear; it may represent ripple in the “hemodynamic net”, or be an ex-
pression of the negative activations that are occasionally found. Incorporation of delay
into the Bayesian model may help to give further independent information concerning
the probability voxels are activated. The finding of the global secondary field (see forth-
coming paper by Kornak, Haggard and Hall for further details) has led to an extension
of the Bayesian spatial model, so that this secondary activity can be distinguished from
conventional activity. This places greater emphasis on the role of the MRF priors, as they
are required to characterize the local structure of the different fields and hence aid the
separation of the two types of response.

The model as extended to include the v-field, can usefully separate parameter estimate
maps into the separate components of interest: conventional primary activity (observed
in the expected locations for the stimulus used), secondary global activity via the in-
termediate field and residual noise. This spatial model requires careful implementation
for a number of reasons. Firstly, there is the inherent non-identifiability of the CAR
model mean and interaction parameters. Secondly, there is the requirement for prior re-
sponse level calibration and thirdly, care is needed in specifying prior distributions for the
hyper-parameters to aid separation of the multiple component fields. However, the second
and third problems should be alleviated as improved prior knowledge of the relationships
between the model’s hyper-parameters are obtained from future data sets.

The full Bayesian model as developed in this report incorporates spatial constraint
via Markov random field models as prior distributions There are two points at which the
Markov random field models operate to provide a posteriori spatial smoothness. The first
is at the level of the parameter estimates (within the x-field which is little different in its
force from classical smoothing via filters except that it is placed within the probabilistic
framework of MRFs and an implicit model for the spatial covariance structure. The
hyper-parameters within the x-field can be seen as parameters that can be optimized for
data or problem area (via posterior estimation) after some preliminary smoothing of the
data for reliability of the HDR parameter estimation. The second point is at the decision
level for the existence of activity within voxels, i.e. for the z-field. The MRF prior in
this case spreads the decision process to take into account the classification as active or
inactive of neighboring voxels. This implements the assumption that a more functionally
sensitive analysis will result by imposing an analysis model in which the nature of the
hemodynamic response cannot be highly local (true) and is broadly categorical rather than
continuous in nature (largely true unless special designs are used to reveal proportional
effects). This handles data on the magnitude of activation in a consistent and near-
optimal way. This second point would normally be left to the eye of the radiologist,
radiographer or neuroscientist and be allowed as “interpretation” in a clinical context.
This is a “skilled” reading of the activated area rather than the magnitude parameter of
activation. In a scientific study this is the aspect of activation that it is difficult to specify
and data-reduce in any objective way for the subsequent probabilistic evaluation of the
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presence (or absence) of regional activity relating to a particular physiological stimulus.
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A Appendix A: Binary map simulations

Simulations from the prior of w and corresponding z-fields thresholded to give 30% and
10% activated voxels (figure B), show that the spatial correlation may be too low to cor-
rectly model the expected extent of a priori connectedness in z. We can therefore consider
the prior distribution to may be too conservative in imposing a priori spatial correlation.
The simulations of (almost) intrinsic GMRFs were obtained with a conditional variance
parameter for ws|w−s of 1, interaction parameter as close as numerically possible to the
intrinsic limit and no edge correction using GMRFsim (Rue, 1999).

———————————————————–
Figure A.1 about here
———————————————————–
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B Conditional distribution for ws

We obtain the full conditional distribution for ws as follows:

π(ws|w−s, y, x, µ, β, κ2, σ2) ∝

exp

{

− 1

2σ2

K
∑

s=1

(xsIws>0 − ys)
2

}

exp

{

−1

2
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<s,t>

(ws − wt)
2
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∝ exp
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(w2
s − 2wswt)

}

∝ exp

{

− 1

2σ2
zs(x

2
s − 2ysxs) − 2(ws − w̄s)

2

}

Therefore

π(ws|w−s, y, x, µ, β, κ2, σ2) =

A exp

{

− 1

2σ2
zs(x

2
s − 2ysxs) − 2(ws − w̄s)

2

}

=

{

A exp {−2(ws − w̄s)
2} ws ≤ 0

A exp
{

− 1
2σ2 (x2

s − 2ysxs) − 2(ws − w̄s)
2
}

ws > 0

Since exp
{

− 1
2σ2 (x2

s − 2ysxs)
}

is a constant factor, i.e. does not depend on ws, the con-
ditional distribution for ws is proportional to a N(w̄s,

1
2
) distribution both above and

below zero. However, it is weighted such that the weight for the region where ws > 0
is exp

{

− 1
2σ2 (x2

s − 2ysxs)
}

times that of the region where ws ≤ 0. To sample ws it is
therefore necessary to find the constant A. This is achieved by equating the sum of the
integrals for the two regions to 1.

1 =

∫ 0

−∞

A exp
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2π

[

1 − Φ
(

−
√

2w̄s

)]

}−1

where Φ indicates the standard normal distribution N(0, 1). In order to obtain a Gibbs
sample for ws the following steps are performed:
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1. Calculate Pr(ws ≤ 0) = A
√

2π Φ (−2w̄s)

2. Sample a uniform U [0, 1] random variable U

3. if U < Pr(ws ≤ 0) set ws = F−1
(

UF (0)
Pr(ws≤0)

)

else set ws = F−1
(

1 −
[

(1−U)(1−F (0))
1−Pr(ws≤0)

])

where F is the cumulative density function of the N(w̄s,
1
4
) distribution; Iws>0 gives the

corresponding value of zs.
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Table 1:

Posterior parameter estimates for the different beta priors, σ2 = 0.01.

Be(0, 0) Be(1, 1) Be(400, 1.5)
——————— ——————— ———————

Parameter mean std dev mean std dev mean std dev
µ 4.77 53.49 5.31 0.689 5.27 1.47
β 0.2499252 0.00018 0.242676 0.00060 0.24911 0.00071
κ2 1.07 0.118 1.11 0.124 1.08 0.118
σ2 0.00982 0.000942 0.00981 0.000941 0.00982 0.000942

RSS 2.393 2.236 2.238

Table 2:

Posterior parameter estimates for the different levels of σ2, 4β ∼ Be(1, 1).

σ2 = 0.01 σ2 = 0.5 σ2 = 1.0
——————— ——————— ———————

Parameter mean std dev mean std dev mean std dev
µ 5.31 0.689 3.91 0.395 4.54 8.8 × 10−5

β 0.242676 0.00060 0.23615 0.0112 0.13803 0.0746
κ2 1.11 0.124 0.76 0.123 0.0 0.0
σ2 0.00981 0.000941 0.250 0.0256 2.38 0.178

RSS 2.236 60.5 871.2
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Table 3:

Start values and hyper-prior distributions used in MCMC.

Parameter Starting value Prior distribution
µ 3.5 N(3.5, 0.1)
β 0.249 Be(400, 1.5)
κ2 0.1 Ga(500, 10)
σ2 0.01 Ga(50, 5)
λ 0.0 N(0.0, 5.0)
γ 0.2495 Be(1, 1)
η2 0.5 Ga(1, 1)
x 25.0
v 0.0
z 0

Table 4:

Posterior parameter estimates for subject 1 –slice 1.

Parameter mean median std dev

µ 3.39 3.39 0.09
β 0.2491 0.2493 0.0004
κ2 0.120 0.118 0.015
σ2 0.030 0.030 0.0015
λ -1.10 -1.19 1.52
γ 0.2497 0.2498 0.0003
η2 9.30 9.29 0.25

RSS 5.09
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Table 5:

Posterior parameter estimates for the slice of subject 2.

Parameter mean median std dev

µ 1.94 1.93 0.13
β 0.2430 0.2432 0.0007
κ2 0.103 0.102 0.0014
σ2 0.026 0.026 0.0014
λ 0.0087 0.0095 0.13
γ 0.2435 0.2435 0.0001
η2 1.67 1.57 0.04

RSS 5.22
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Figure 1. Schematic of the BOLD HDR function. There is a short and small initial dip
followed by the main rise and (slower) fall. The response subsequently dips below the
baseline before settling to the baseline state.

Figure 2. Simulation study data and results for the σ2 = 0.01 and 4β ∼ Be(0, 0) prior
case. Panel (a) displays the simulated spatial magnitudes (response data). The central
disk consists of the CAR process (representing a region of activity) plus Gaussian noise
σ2 = 0.01 (elsewhere consists of Gaussian noise only). The other maps show the corre-
sponding posterior MMSE estimates of the other fields in the model; (b) x, (c) z, (d) w,
(e) z � x and (f) ε.

Figure 3. MCMC plots for the parameters µ and β (Be(0, 0) prior, σ2 = 0.01). For
periods where the trace for β approaches 0.25, the parameter µ becomes non-identifiable
and the variability of its trace increases.

Figure 4. Map (a) is that of the Poisson parameter estimates for slice 1 of subject 1.
Maps (b) – (f) are the posterior map estimates: (b) x, (c) z, (d) w, (e) z � x, (f) ε. Dark
regions correspond to high values. The residual map has high spatial correlation.

Figure 5. [subject 1 – slice 1] Map (a) is that of the Poisson parameter estimates for slice
1 of subject 1. Maps (b) – (f) are the posterior map estimates: (b) x, (c) z, (d) v, (e)
z � x + z � v, (f) ε. The magnitude of the residuals is negligible compared those of the
previous model displayed in Figure 4.

Figure 6. [subject 1 – slice 1] The map shows the spatial distribution of the re-scaled
residuals from Fig. 5. Spatial structure continues to exist in the residuals but its magni-
tude is much reduced over that in Figure 4.

Figure 7. [subject 1 – slice 2] Map (a) is that of the Poisson parameter estimates for
slice 2 of subject 1. Maps (b) – (f) are the posterior map estimates: (b) x, (c) z, (d) v,
(e) z � x + z � v, (f) ε. Bi-lateral activation is observed in this slice along with activation
in the lower mid-brain.

Figure 8. [subject 2] Map (a) is that of the Poisson parameter estimates for the considered
slice subject 2. Maps (b) – (f) are the posterior map estimates: (b) x, (c) z, (d) v, (e)
z � x + z � v, (f) ε. Notice that the secondary activation map displayed in panel (d) has
less structure than those displayed in panel (d) of Figures 5 and 7 for subject 1.

33



Figure A.1. 100 × 100 simulations of (almost) intrinsic first order GMRFs (a), (b) are
simulations of the GMRFs, (c), (d) are the thresholded versions with 30% of voxels active
(black = 1), (d), (e) are thresholded for 10% active voxels.
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