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Abstract

Probabilistic sensitivity analysis (PSA) is required to account for un-
certainty in cost-e¤ectiveness calculations arising from health economic
models. The simplest way to perform PSA in practice is by Monte Carlo
methods, which involves running the model many times using randomly
sampled values of the model inputs. However, this can be impractical
when the economic model takes appreciable amounts of time to run. This
situation arises, in particular, for patient-level simulation models (also
known as micro-simulation or individual-level simulation models), where
a single run of the model simulates the health care of many thousands of
individual patients. The large number of patients required in each run to
achieve accurate estimation of cost-e¤ectiveness means that only a rela-
tively small number of runs is possible. For this reason, it is often said
that PSA is not practical for patient-level models.

We develop a way to reduce the computational burden of Monte Carlo
PSA for patient-level models, based on the algebra of analysis of variance
and Bayesian statistics. Methods are presented to estimate the mean and
variance of the model output, the cost-e¤ectiveness acceptability curve
and value of information calculations. The methods are simple to apply
and will typically reduce the computational demand by a factor of at least
20. Three examples are presented.

Keywords: Analysis of variance; Bayesian statistics; cost-e¤ectiveness;
cost e¤ectiveness acceptability curve; economic evaluation; economic model;
individual-level simulation; micro-simulation; Monte Carlo; patient-level
model; osteoporosis; probabilistic sensitivity analysis; rheumatoid arthri-
tis; value of information.

1 Introduction

1.1 Background

Probabilistic sensitivity analysis (PSA) is increasingly demanded by health care
regulators and reimbursement agencies when assessing the cost-e¤ectiveness of
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technologies based on economic modelling [1][2]. The economic evaluation of
competing technologies is generally conducted with the aid of an economic model
that synthesises knowledge about a variety of inputs derived from available
information sources. PSA entails specifying a joint probability distribution to
characterise uncertainty in the model�s inputs and propagating that uncertainty
through the model to derive probability distributions for its outputs (such as
population mean costs or incremental net bene�t) [3][4][5]. The usual way to
propagate the uncertainty is the Monte Carlo method, whereby random values
of the model input parameters are simulated and the model is run for each
simulated parameter set. The resulting sample of outputs characterises the
output uncertainty, and to obtain accurate PSA we typically need 1,000 or
more model runs.
Although most economic modelling has used cohort models, in which the

output is the appropriate measure of cost-e¤ectiveness for the entire treated
population, there is increasing use of patient-level simulation models (also known
as micro-simulation or individual-level simulation models) [6][7][8][9][10][11][12],
in which treatment and response pathways for individual patients are simulated,
and the outputs are mean costs, e¤ectiveness or cost-e¤ectiveness measures for
a sample of individuals. It is often said that we cannot do PSA by Monte Carlo
for a patient-level model because the time required to run it for each set of
sampled input parameter values means that it is not practical to perform the
large number of runs needed for Monte Carlo PSA. The lengthy computation
time is due to the need to simulate a very large number of patients in order
for the simulated sample to give an accurate value for the population cost-
e¤ectiveness measure for each input parameter set. The thrust of this article is
that there is another way, the analysis of variance (ANOVA) approach, that is
simple to use and requires in the order of 25 times less computation.
The remainder of this section de�nes some basic notation and considers the

particular example where model output is incremental net bene�t, while Section
2 presents the standard Monte Carlo approach to PSA for patient-level models,
including analysis of the number of patients required per run and the number of
runs required to achieve any desired accuracy in the main PSA analyses. Section
3 develops the ANOVA theory for more e¢ cient simulation, based on using a
smaller number of patients in each run. Estimators for the mean and variance of
the model output are derived, with formulae for the optimal number of patients
per run and the number of runs required to achieve desired accuracy. The theory
is extended to estimating the cost-e¤ectiveness acceptability curve in Section 4,
and to value of information analyses in Section 5. Finally, Section 6 discusses
incremental cost-e¤ectiveness ratios, alternatives to Monte Carlo and directions
for further research. Some technical details are given in the Appendix.

1.2 Notation

We suppose that the model simulates independent patients. That is, the pa-
tients and their pathways do not interact. Some discussion of the case of non-
independent patients can be found in Section 6.4.
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Let x denote the vector of model input parameters, whose uncertainty we
wish to account for in the PSA. Let y(x) denote the �true�model output for
input vector x. In a patient-level model, however, we never actually observe
y(x). Instead, the model produces for each simulated patient a value z that is
y(x) plus noise. The noise has zero expectation, because the de�nition of the
�true�model output is the population mean (i.e. averaged over a large population
of patients).
In a Monte Carlo PSA, let xi denote the i-th sampled parameter set, and

let zij denote the output value for the j-th individual patient in the model run
using inputs xi. The subscript i ranges from 1 to N , the number of parameter
sets sampled in the PSA, i.e. the number of model runs. The subscript j runs
from 1 to n, the number of patients simulated in each model run. We denote the
mean output for run i by �zi = 1

n

Pn
j=1 zij , and the mean over all Nn patients

in all model runs by �z = 1
N

PN
i=1 �zi.

We have assumed for clarity that the same number of patients will be sim-
ulated in each run. This is the usual situation, although the theory can be
generalised to the case of unequal numbers; see Section 6.5.
The purpose of PSA is to derive relevant properties of the probability dis-

tribution of y(X). Notice that X here is a capital letter, denoting that it is
a random variable. The distribution of y(X) is the distribution that would be
obtained if we were able to compute yi = y(xi) for a very large sample of pa-
rameter sets xi. The two most important aspects of that distribution are its
mean,

� = E(y(X)) ;

and its variance,
�2 = var(y(X)) :

Their interpretations are that � is the best estimate of the output y allowing
for uncertainty in the model inputs, while �2 describes the uncertainty around
that estimate due to input uncertainty. Our analysis in the remainder of this
section and the next concentrates on methods to estimate � and �2.
Another important quantity in all of these methods is the variability between

patients in a given run. Generally, we let �2(x) be the patient-level variance for
simulations of patients with parameters x, and let

��2 = E(�2(X))

be the mean value of �2(x) averaged with respect to the uncertainty in X. In
general, the larger the patient-level variability the more patients we will need
to sample in each run. We de�ne

k = ��2=�2 ;

so that ��2 = k�2.
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1.3 Net bene�t

Although the individual patient output z might be any measure of cost, e¤ec-
tiveness or cost-e¤ectiveness, it will be helpful to keep in mind as an example
the case where the model is comparing two treatments and z is the incremental
net bene�t for treatment 2 over treatment 1 for this patient. This is de�ned as

z = �� �e� �c ; (1)

where �e is this patient�s increment in e¤ectiveness, �c is the patient�s increment
in costs and � is the willingness to pay coe¢ cient, expressing the monetary value
to the health care provider of one unit increase in e¤ectiveness. Then y is the
population mean incremental net bene�t [13], and treatment 2 is more cost-
e¤ective than treatment 1 if y > 0. One role of PSA is then to quantify the
uncertainty in whether treatment 2 is more cost-e¤ective. The mean � is the best
estimate of the population mean incremental net bene�t y(X), and if a decision
is required to use one treatment or the other it should be to use treatment 2 if
� > 0 [14]. The variance �2 describes uncertainty in this decision. For instance,
if � is positive but � is not small relative to �, then there is an appreciable risk
that the decision to use treatment 2 will be found to be wrong because y(X) is
really negative. Conversely, if the absolute value of � is large relative to � (for
instance, 3� or more) then there is very low decision uncertainty.
Our analysis in Section 4 deals explicitly with this case, and with estimating

the cost-e¤ectiveness acceptability curve [15] that plots the probability that
y(X) is positive as a function of �. However, net bene�t also provides a helpful
illustration for the more general theory in Sections 2 and 3.

2 Standard Monte Carlo PSA

2.1 Standard MC estimators

In conventional economic models without patient-level simulation, we observe
yi = y(xi) in run i, and the Monte Carlo estimators of � and �2 are respectively
�y = 1

N

PN
i=1 yi and s

2 = 1
N�1

PN
i=1(yi � �y)2. These estimators are unbiased.

The standard approach to using Monte Carlo with patient-level models is to
make n large enough so that each �zi is deemed to be a su¢ ciently accurate
computation of yi, and then to apply the usual estimators. Hence we have

�̂S = �z ; �̂2S =
1

N � 1

NX
i=1

(�zi � �z)2 : (2)

The subscript S here indicates that these are the standard Monte Carlo esti-
mates. The mean and variance of �̂S follows from simple algebra, using the
facts that E(�zi) = � and var(�zi) = �2 + ��2=n. We �nd

E(�̂S) = � ; (3)

var(�̂S) =
�2

N
+
��2

Nn
: (4)
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Therefore �̂S is an unbiased estimator of �, and its variance decreases with N
in the usual way. Assuming large n, the Central Limit Theorem in statistics
ensures that the �zis are approximately normally distributed, and hence �̂

2
S has

a chi-squared distribution. Its mean and variance are

E(�̂2S) = �2 + ��2=n ;

var(�̂2S) =
2

N � 1(�
2 + ��2=n)2 :

Therefore the standard Monte Carlo estimator �̂2S is biased. Its bias is ��
2=n,

which is always positive, so on average it over-estimates �2. The main reason
for using a large n is to make this bias small.

2.2 Sample sizes for standard estimators

We now identify values of n and N that would be required to obtain any desired
accuracy in �̂S or �̂

2
S . Although these estimators are widely used in PSA of

economic models, we do not believe that these explicit sample size calculations
have been presented before in this context. As usual, the sample sizes depend on
the unknown values of the variances, in this case �2 and ��2, and it is therefore
necessary to obtain initial estimates or guesses in order to apply the formulae.
The primary focus of the cost-e¤ectiveness analysis is �, the best estimate

of the cost-e¤ectiveness output y in the light of input uncertainty. Suppose that
we wish to estimate � with standard deviation d, so that a 95% interval has
width �1:96d. Then we would need

N � �2 + ��2=n

d2
=
1 + k=n

d2
�2 : (5)

If n has been chosen large enough to make ��2=n very small compared with �2,
then this is approximately �2=d2, which is the sample size required in conven-
tional cohort models.
In the context where the model output is incremental net bene�t, as dis-

cussed in Section 1.3, interest will focus on the magnitude of � relative to �.
Then it is appropriate to set d to some small multiple of �, so that the un-
certainty in the estimate of � does not cloud the assessment of whether its
absolute value is large enough relative to � to imply low decision uncertainty.
For instance, if we set d = c1� then (5) becomes

N � (1 + k=n)=c21 : (6)

Although � is a key component of the cost-e¤ectiveness analysis, the primary
objective of PSA is to identify the amount of uncertainty in the model output,
which is measured by �2. It is usual to require accuracy of variance estimates
to be expressed in terms of the coe¢ cient of variation, which is

CV (�̂2S) =

q
var(�̂2S)

E(�̂2S)
=

r
2

N � 1 :
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So suppose that we wish to achieve a coe¢ cient of variation less than or equal
to c2. For instance, setting c2 = 0:05 means that we require to estimate �2 with
a standard deviation no more than 5% of �2 itself, and hence an approximate
95% con�dence interval of �10%. Then the required number of runs is

N � 1 + 2=c22 : (7)

When the interest is in incremental net bene�t we would generally wish to have
both � and � estimated to comparable precision. With coe¢ cient of variation
for estimating �2 set to c2, the precision in � will be of the order of c2=2, so
setting c2 = 2c1 may be appropriate in this case. Then by comparing (6) and
(7) we can see the former is the more stringent requirement: the number of runs
in standard Monte Carlo should normally be chosen to satisfy the requirement
(6) for accurate estimation of the mean �.
A natural objective in choosing n would be to make the bias in �̂2S small

compared with the width of a con�dence interval for �2. We therefore suggest
that in general n should be made large enough so that the bias is only 10% of
c2�

2. Then, remembering that k = ��2=�2, this implies

n � 10k=c2 : (8)

In the case where the output is incremental net bene�t, we can combine this
with the preceding suggestion that c2 = 2c1 and apply (6) to obtain N �
(1 + 0:2c1)=c

2
1, so that the total number of patients to be sampled, Nn, is at

least 5k=c31.

2.3 Example 1: osteoporosis

To illustrate the sample size calculations, we consider a large model developed
at She¢ eld for assessing the cost-e¤ectiveness of many treatments for osteoporo-
sis [12]. For this example, we chose to compare alendronate, a bisphosphonate
costing £ 301 per annum, with no treatment. The patient population was de-
�ned to be women without a prior clinical fracture and a T-Score of �2:5SD.
The relative risk of fracture by using alendronate was estimated (with 95% un-
certainty interval) to be 0.46 (0.23 �0.91) at the hip, 0.53 (0.42 �0.67) at the
vertebrae and 0.48 (0.31 �0.75) at the wrist [16]. Other inputs to the model
were the costs and disutilities associated with fracture, which for the purposes
of this analysis were �xed at their central estimates. Our output measure was
the incremental net bene�t (INB) at a willingness to pay threshold of £ 30,000
per QALY. We wish to conduct PSA to assess uncertainty in the INB due to
uncertainty in the three relative risk parameters.
Initial estimates of variances were ��2 = 2:38 � 109 and �2 = 205072, and

hence k = 2:38 � 109=205072 = 11606. The derivation of these initial es-
timates is described in Section 3.6, since they rely on the ANOVA methods
developed in Section 3. On the basis of these estimates, equation (8) suggests
using n = 116060=c2, and even setting c2 = 0:2 implies more than half a million
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patients per run. On this basis, each run of the model would have required ap-
proximately forty-two hours of computing time on a fast PC, making any serious
PSA infeasible. In fact, from (6) and using the corresponding c1 = 0:1 we would
require N = 1:02=0:12 = 102 runs, and a total computing time of almost six
months. It is to address the infeasibility of PSA for many patient-level models
using the standard Monte Carlo method that the theory in the following section
is developed.

3 One way ANOVA

3.1 Using fewer patients per run

If the only objective of the PSA were to be estimating �, then the following
argument shows that the approach of using a large number of patients in each
run would be far from optimal. The derivation of the mean and variance of �̂S
in equations (3) and (4) does not depend on using a large n, and in particular we
see that �̂S is unbiased for any n. Now suppose that the number of patients that
we can run in total is �xed, sayNn =M . To estimate � as accurately as possible
we should try to minimise var(�̂S), which from (4) is equal to �2=N + ��2=M .
Minimising this variance for �xed M means making N as large as possible.
Therefore the most e¢ cient way is to to make n = 1, i.e. to sample just one
patient per parameter set. We then get var(�̂S) = �

2=M + ��2=M .
The problem with only sampling one patient per parameter set is that we

cannot separate �2 from ��2, and so we cannot estimate �2. In practice, PSA
is performed not only to estimate � but also to estimate output uncertainty, as
described in particular by �2. However, we now consider how by accepting a
smaller number of patients per run, and by correcting the resulting bias in the
estimate of �2, we can reduce the overall computational load to perform PSA
on patient-level models.

3.2 Estimate of �2 and its variance

The one-way analysis of variance in frequentist statistical theory allows us to
estimate �2 and ��2 separately. De�ne the usual within-groups and between-
groups sums of squares

Sw =
NX
i=1

nX
j=1

(zij � �zi)2 ; Sb = n
NX
i=1

(�zi � �z)2 ;

so that in particular the standard Monte Carlo estimator of �2 is �̂2S =
Sb

(N�1)n .
Then we �nd

E(Sw) = N(n� 1)��2 ; E(Sb) = (N � 1)n�2 + (N � 1)��2 :
So, provided n > 1, an unbiased estimator of �2 is

�̂2A =
1

n

�
Sb

N � 1 �
Sw

N(n� 1)

�
; (9)
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which is �̂2S minus a estimate of the bias.
The fact that we can produce a simple unbiased estimator of �2 without

simulating huge numbers of patients for each run is a valuable result. However,
we need also to ask how good this estimator is.
One immediate problem with �̂2A is that it can be negative. Factors that

increase this risk are

� when ��2 is large relative to �2, and

� when n is small.

The �rst of these will often arise in patient-level simulation models, where vari-
ability between patients is much larger than the variability induced by uncer-
tainty over model inputs. The second means that taking very few patients per
run may not be wise.
We can approximate the sampling variance of �̂2A by supposing that Sw and

Sb have independent chi-square sampling distributions with degrees of freedom
N(n�1) and N �1. This assumption is correct if the distributions of y(X) and
of the patient-level variability are normal, and if �2(x) = ��2 for all x; otherwise
it may still be a reasonable approximation, although variability in the �2(x)
values will certainly increase the variance of �̂2A.
Under the assumed independent chi-square distributions, the variance of �̂2A

becomes

var(�̂2A) = 2

�
(�2 + ��2=n)2

N � 1 +
��4

Nn2(n� 1)

�
: (10)

3.3 Optimal allocation of N and n

The new method will work for any choices of n and N . We will wish to choose
these so as to obtain suitably small variances (4) and (10) for the estimators of
� and �2. However, having the freedom now to choose both n and N gives us
extra �exibility. Note that the total sampling e¤ort is represented by M = Nn,
the total number of patients to be sampled. It is possible to optimally choose
the balance between n and N in order to minimise the total sampling e¤ort
required to achieve any desired accuracy in the estimators. The results in this
section are obtained as follows. First we identify the number n of patients to
be sampled in each run in order to minimise (10) for �xed M . Then we �nd the
minimal M to achieve the required accuracy for estimating �2. These two steps
give optimal values of N and n, and we �nd that they also give the desired
accuracy for estimating �. Full details of these derivations are given in the
Appendix, and we report here the key results.
First, the optimal allocation of n for given total sampling e¤ort M is

n =
M(1 + k) + k

M + 2k
: (11)

Suppose again that we wish to achieve a coe¢ cient of variation for estimating �2

less than or equal to c2, so that we require var(�̂
2
A) � c22�4. Then the required
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total sampling e¤ort is

M =
1

2c22

�
c22 + 2 + 8k +

q
c42 + 4c

2
2 + 16c

2
2k + 4 + 32k + 64k

2 + 32c22k
2

�
(12)

These two values determine N = M=n. (Both N and n should be rounded up
to integer values.)
For most practical purposes, we can use the following simple approximations

to the above formulae.

M = 8k=c22 ; (13)

n = 1 + k : (14)

These approximations will be su¢ ciently accurate whenever k is at least 25 and
c2 is less than or equal to 0.2.
Although this theory has been developed under an assumption of normality

and heteroscedasticity, we suggest that n = 1+ k and N = 8=c22 are likely to be
good choices generally. Note also that the optimal n should minimise the risk
of obtaining a negative estimate of �2 (since it is the coe¢ cient of variation of
the estimator that is actually being minimised).

3.4 Summary of the ANOVA method

We can summarise all the above results in the following simple steps. Note
that for steps 1 and 2 we need to have a prior estimate of k = ��2=�2, which is
discussed in Sections 3.6 and 3.7 below.

1. Given a desired sampling precision c2 for estimating �2, choose M using
equation (12) or its simple form (13).

2. Now choose n using (11) or its simple form (14), and set N =M=n.

3. Carry out the Monte Carlo sampling with these choices of N and n
(rounded up to integer values):

4. Estimate � by �̂S = �z. Estimate �
2 by �̂2A, using (9).

5. The variances of these estimators are given by (4) and (10), respectively.
These can be estimated by substituting into them the estimate SW =fN(n�
1)g for ��2, �̂2A for �2, and the ratio of these for k.

If in step 1 the required overall sampling e¤ort M is impractically large,
the method can still be followed through by using whatever M can realistically
be resourced. With the prior estimate of k, we can estimate that this M will
achieve the approximate coe¢ cient of variation c2 =

p
8k=M .
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3.5 E¢ ciency gain over standard Monte Carlo

We found in Section 2.2 that the appropriate values for N and n using the
standard Monte Carlo approach would yield a total sampling load ofM = Nn =
5k=c31, at least in the case where the model output is incremental net bene�t.
The above analysis yields a value of M = 8k=c22 with the ANOVA method.
Under the suggested relationship c2 = 2c1, the latter becomes 2k=c21. Therefore
the gain in e¢ ciency is shown by a typical reduction in overall sampling by a
factor of 2:5=c1, and since we will usually require c1 to be 0.1 or less this implies
an e¢ ciency gain of 25 times or more.
We suggest that the fact that the ANOVA method requires of the order of 25

times less overall computing e¤ort will make it a feasible way to perform PSA
in many models for which the standard Monte Carlo approach is impractical.

3.6 Example 1: osteoporosis (continued)

Continuing the analysis of the osteoporosis model in Section 2.3, we will now
apply the theory for the ANOVA method. The theory of optimal allocation
requires that we know the ratio k = ��2=�2, which of course in practice will be
unknown. It is necessary �rst to obtain a prior estimate of k, which in itself may
be di¢ cult for a large patient-level simulation model. In practice, it is natural
to obtain estimates from a preliminary PSA.
An initial run of the osteoporosis model was made with relative risk inputs

set at their mean values (which we will denote by x0) and with 15,000 patients.
This yielded a mean INB of 1308.2 and a patient-level variance of about 2:4�109.
The choice of 15,000 patients was based on the fact that the standard error of the
mean is the square root of 2:4�109=15000, i.e. 400, which is small enough relative
to the observed mean of 1308 to be con�dent that the true mean incremental
net bene�t y(x0) is positive. It is then necessary to perform a PSA for the usual
two reasons: �rst, to estimate �, recognising that because of non-linearity this
will generally be di¤erent from y(x0); second, to assess the uncertainty in the
estimate of �, as measured by �2.
A further 26 runs of the model were performed, also with 15,000 patients per

run. Together with the initial baseline run, the 27 runs comprised a 3 � 3 � 3
factorial design with each fracture probability input set at three levels � its
mean value and its mean value plus or minus one standard deviation. This
design was intended to provide initial indications of sensitivity to each input,
but also serves to give a rough estimate of �2. It was found that the patient-level
variance was 2:38� 109 averaged over all of the runs (and apparently constant
across runs), and so this is an initial estimate of ��2. The variance between
the means of these 27 runs was found to be 219429. Subtracting the estimated
bias of 2:38 � 109=15000 = 158667 (in e¤ect, applying equation (9)) gives an
initial estimate of 60762 for the underlying variance across these 27 runs. In
order to convert this to an estimate of �2, note that the variance of the three
values used for each input in the factorial design is actually two-thirds of the
variance describing the uncertainty in that input. We therefore estimate �2 by
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60762�1:53 = 205072. The correction factor here is based on the model output
being approximately linear in its inputs. This is a very crude estimate, being
based only on 27 runs and on approximate linearity (and we were lucky it did
not come out negative), but suggests a value for k of 2:38�109=205072 = 11606.
On this basis it was decided to perform the main PSA using 10,000 patients per
run.
Each run of 10,000 patients takes about 50 minutes on a fast PC, so the PSA

will still be highly computer intensive. We had resources to make 500 model
runs. If 10,000 patients per run were indeed optimal, this would enable us to
estimate �2 with a coe¢ cient of variation c2 =

p
8=500 = 0:126, so �2 will

be estimated to within about �25%. Our main analysis is therefore based on
N = 500 runs using fracture probability inputs randomly sampled from their
uncertainty distributions, and n = 10000 patients per run. From these data,
we found �z = 879:2, Sw = 1:1935658 � 1016 and Sb = 230495731. Thus, the
estimate of � is 879.2, the estimate of ��2 is Sw=(500 � 999) = 2:387 � 109 and
we obtain �̂2A = 223178.
The resulting estimate of k is the ratio of these last two estimates, 10695, so

the optimal number of patients per run would be approximately 10,700, which is
fortuitously close to the original estimate of 11,600 and to the 10,000 we actually
used.
It is appropriate now to ask how accurate the estimates of � and �2 are, and

how much sampling has been saved by using the ANOVA method. The estimate
of � has variance (�2 + ��2=n)=N , which is estimated by Sb=fN(N � 1)g =
923:8, corresponding to a standard error of 30.4. So a 95% interval for � is
approximately 879:2� 60:8 = [818:4; 940:0]. Using equation (10), we obtain an
estimated standard deviation for �̂2A of 29244, so an approximate 95% interval
for �2 is 223178 � 58488 = [164690; 281666]. As expected, the interval has
range approximately �25%. The corresponding estimate and 95% interval for �
become 472:4 and [405:8; 530:7]. The interval has range approximately �13%.
These various estimates and intervals are the primary results of the PSA.
To con�rm the e¢ ciency of the ANOVA method, suppose that we had chosen

to apply the standard Monte Carlo method with the same target coe¢ cient of
variation of c2 = 0:126 for estimating �2. Then following the analysis in Section
2.3 we should have used n = 10k=c2 = 850; 000 patients per run. A sample
of size N = 125 would now su¢ ce to estimate �2 with coe¢ cient of variation
0.126. However, to estimate � with a comparable standard deviation of 0:063�
would have required N = 256 runs. Even if such huge numbers of patients
could be handled in each run, the total number of patients simulated would
have been over two hundred million and would have taken almost two years of
solid computation. Our actual analysis used 500 runs of 10,000 patients each, or
5 million patients in all, which represents a forty-fold saving in e¤ort (agreeing
with the formula 2:5=c1 = 2:5=0:063 = 39:7).
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3.7 Implementation

The key to implementing the method is to obtain an initial estimate of �2. The
method used for the osteoporosis model can be adapted for use more generally.
First note that the model input values for the initial set of runs were not chosen
randomly. In order to obtain a useful estimate of �2 it is important to use
model input sets that are well separated. In fact the choice of levels for the
three factors (i.e. model inputs) in that experiment was probably not good, in
that they were not su¢ ciently well spread out and it was necessary to scale up
the resulting estimate of �2. Instead, we suggest setting the three levels of each
input to its mean and the mean plus and minus 1.5 standard deviations. Then
instead of multiplying the resulting �2 estimate by 1:5d, where d is the number
of inputs, the appropriate factor is ( 23 )

d.
The number of initial runs in the osteoporosis example was 27, and we

suggest that about this size of preliminary sample should su¢ ce to obtain a �rst
estimate of �2, using quite large numbers of patients per run. With more than
d = 3 parameters, it will not be possible then to use all the 3d combinations
of parameter values for a full factorial experiment. There is some theory of
fractional factorial experiments in the statistics literature, which would certainly
yield good designs. However, in practice it may be adequate simply to use a
random selection of 20 to 30 combinations (sampling without replacement) from
those 3d.
It may help to constrain the choice so that each level of each factor is used

the same number of times. This could be achieved by the following procedure
(based on Latin Hypercube sampling). Select 3 sample points by arranging the
three levels of each factor in a random order. For instance, with d = 4 this
might yield the orders (L;H;M), (L;M;H), (H;M;L), (M;H;L) for the four
parameters, where L, M and H respectively denote the low, mean and high
levels of a factor. Then this would give the three sample points (L;L;H;M),
(H;M;M;H) and (M;H;L;L), i.e. the �rst point has inputs 1 and 2 at their
low levels, input 3 at its high level and input 4 at its mean level. Repeating
this process to generate more sets of three points (and rejecting any set that
produces a point that has already been chosen) will yield sample designs with
the desired balance.

4 The probability of cost-e¤ectiveness

As discussed in Section 1.3, a common objective of PSA is to estimate the
probability that treatment 2 is more cost-e¤ective than treatment 1. If the
model output y is the incremental net bene�t of treatment 2 with respect to
treatment 1, then treatment 2 is more cost-e¤ective if y is positive. Because of
uncertainty about model inputs, there is uncertainty about cost-e¤ectiveness,
and it is therefore of interest to ask for the probability that y is positive, i.e.
P (y(X) > 0).

12



4.1 Two approaches

The simplest way to estimate this probability is to use just the estimated mean
�̂S = �z and the estimated variance �̂2A of the uncertainty distribution. If we
assume that this distribution is approximately normal, then we can estimate
P = P (y(X) > 0) by

P̂N = �(�z=�̂A) ;

where � denotes the standard normal distribution function. We will refer to
P̂N as the normal-distribution estimate. For instance, in the example of Section
3.6 we found �z = 879:2 and �̂A =

p
223178 = 472:4. So �z is 879:2=472:4 =

1:86 standard deviations above zero, and the probability that alendronate is
cost-e¤ective relative to no treatment is estimated to be P̂N = �(1:86) = 0:969.
When doing PSA with a cohort model, the same approach can be used, in

which the standard Monte Carlo estimators, the sample mean and variance of
the observed yis, take the place of �z and �̂

2
A. However, in practice a nonparamet-

ric approach is used instead which does not assume that the input uncertainty
leads to output uncertainty that has the normal distribution form. The actual
sampled yis may not look like a sample from a normal distribution, for instance
having skewness or long tails, and it is hard then to justify a method that as-
sumes normality. Instead, it is usual simply to estimate P (y(X) > 0) by the
proportion of sampled yis that are positive. This nonparametric estimate avoids
the normality assumption and is more responsive to the shape of the sample.
In a patient-level simulation model, if we can make su¢ ciently large runs to

ignore the noise, the proportion of �zis that are positive could be used instead.
We will refer to this as the standard Monte Carlo estimate, and denote it by
P̂S . However, it is easy to see that when we do not have such large n this
will be a biased method. Because of sampling variability in the �zis, they will
yield a sample that is more spread out than the corresponding yis would be.
For instance, in the osteoporosis example of Section 3.6, P̂S = 445=500 = 0:89,
which underestimates the true probability of cost-e¤ectiveness. We need to
develop a method that takes account of this extra variability.

4.2 A Bayesian estimate

We propose a hybrid method as an alternative to the normal-distribution esti-
mate P̂N , based on estimating the true yis by a standard Bayesian argument
assuming normally distributed values, but then using the nonparametric ap-
proach to estimate P (y(X) > 0). For the �rst step, we suppose that �zi is
normally distributed around its mean value of yi, with variance ��2=n. Because
of the Central Limit Theorem (CLT), this will almost always be a reasonable
assumption in practice. We also assume that yi is normally distributed about
its mean of � and with variance �2. We cannot appeal to the CLT to justify
normality in this case, and it is assumed at this stage essentially for convenience.
To estimate yi, we can use a Bayesian argument in which the observation

is �zi and the unknown parameter is yi. The distribution N(yi; ��2=n) for the
observation provides the likelihood function, and the prior distribution for yi is
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N(�; �2). Now if �, �2 and ��2 are known, the Bayesian posterior distribution
of yi is normal with mean

ŷi =
n�zi=��

2 + �=�2

n=��2 + 1=�2
= w�zi + (1� w)� ; (15)

where

w =
n=��2

n=��2 + 1=�2
=

n

n+ k
; (16)

and variance
v = w��2=n :

To use this result, we substitute estimates derived in Section 3. Thus, we use
equation (9) for �2, Sw=fN(n � 1)g for ��2 and �z for �. Note that this ignores
uncertainty in these parameter estimates, and so is not a fully Bayesian solution.
In e¤ect, we suppose that the sampling is adequate to estimate these parame-
ters accurately. Whereas this will in practice be true for � and ��2 it may not
hold for �2. However, a fully Bayesian analysis would be much more complex,
and we prefer the simpler approximation because it is readily understood and
implemented.
To estimate P (y(X) > 0), we do not simply use the proportion of ŷis that

are positive, since ŷi is only an estimate of yi. We need to take account also of
the variance v. From the Bayesian posterior distribution, the probability that
yi is positive is �(ŷi=

p
v). Hence we obtain the estimate

P̂H =
1

N

NX
i=1

�(ŷi=
p
v) ; (17)

which we will refer to as the hybrid estimate. Of course, this solution is expressed
in terms of the unknown parameters �, �2 and ��2, and in practice we need to
replace these by estimates. If we substitute the ANOVA estimate (9) for �2 and
Sw= fN(n� 1)g for ��2 we �nd that

w = n(N � 1)�̂2A=Sb = 1� 1=F ; (18)

where F = Sb
N�1=

Sw
N(n�1) is the usual F -statistic in one-way analysis of variance,

and
v = �̂2A=F : (19)

From (18), and using the estimate �̂S = �z for �, we can rewrite (15) as

ŷi = �zi � (�zi � �z)=F : (20)

It is then simple to apply (17) using (20) and (19).
Applying the hybrid estimator to the osteoporosis example yields P̂H =

0:965, which is very close to the normal-distribution estimate of 0.969.
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4.3 Example 2: simulated data

In order to test the accuracy of P̂N and P̂H when the underlying distribution is
non-normal, we conducted a simulation exercise. The true distribution of y(X)
is shown in Figure 1, which shows it to be far more peaked in the centre and
far more long-tailed than the normal distribution. It also exhibits a moderate
degree of skewness. The construction of this distribution is described in the
Appendix.
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Figure 1. True distribution of incremental net bene�t, Example 2.

The true mean � is 550 and the true variance is �2 = 11612 = 1:35 � 106.
The true probability that net bene�t is positive is P (y(X) > 0) = 0:705. The
simulation assigned a patient-level variance of ��2 = 4� 108, so that the optimal
value of n would be 1 + ��2=�2 = 297. We suppose that it is decided to perform
PSA with N = 500 runs of n = 300 patients per run. For each run a true
output yi was sampled from the distribution shown in Figure 1. A sample mean
�zi was generated by adding a normally distributed error to yi with zero mean
and variance ��2=n = 1333333. The simulation was repeated 10,000 times. In
each simulation, �̂2A; P̂N and P̂H were computed, as well as the standard Monte
Carlo estimate P̂S based on the proportion of positive sample means �zi. The
results are shown in Table 1.
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Mean (std. dev.)
�̂A 1157 (91)
P̂N 0.683 (0.024)
P̂H 0.681 (0.024)
P̂S 0.624 (0.022)

Table 1. Mean and standard deviation for PSA estimates based on 10,000
simulations.

It can be seen that the true PSA standard deviation � is estimated quite
accurately. It is worth noting that although �̂2A is an unbiased estimator of
�2, �̂A will strictly be a biased estimator of �. Table 1 con�rms that this bias
is small (although it would be larger if a smaller PSA had been conducted;
N = 500 and n = 300 is adequate to estimate �2 reasonably accurately). Note,
however, that both P̂N and P̂H underestimate the true value of P = 0:705
slightly. The discrepancy is because of the non-normality of the underlying
output distribution. The two estimates are very similar and both are much
better that P̂S , which shows the anticipated bias due to not having a large
enough n.
The similarity of the two estimates P̂N and P̂H re�ects the fact that the

hybrid method does not recover much of the rather marked non-normality of
the underlying distribution, as shown in Figure 1. This is not really a failure
of the method, but is a consequence of using a relatively small n. This leads
to the sample means �zi having a large random variability around the true yis,
and this error is e¤ectively normally distributed. Hence, the sampled �zis do
not retain the underlying non-normal shape of the yis, and the gain from using
the individual ŷis in the hybrid method is much smaller than that of using the
nonparametric estimator P̂S in the large n case.

4.4 CEAC

The above analysis assumes that the model output y is incremental net bene�t,
which requires that the willingness to pay coe¢ cient � is known. In practice, it
is usual to consider a range of values of � by computing the cost-e¤ectiveness
acceptability curve (CEAC), which plots the probability P (�) that incremental
net bene�t is positive against �. The above analysis can be applied separately
for each � in order to plot the CEAC; however, it is possible to derive estimates
of the CEAC directly, using both the normal-distribution and hybrid methods,
by generalising the above analysis to two outputs.
Let y be a vector comprising the two outputs ye and yc, representing respec-

tively incremental e¢ cacy and incremental cost. Now we identify � = E(y(X))
as also a vector comprising �e and �c, while �

2 = var(y(X)) is a 2� 2 matrix.
Similarly, the between patient variance ��2 is a 2� 2 matrix. The data now give
rise to the mean vector �zi at the i-th input con�guration xi and the overall
mean vector �z = 1

N

PN
i=1 �zi, as before. The sums of squares Sb and Sw are now
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also 2� 2 matrices of sums of squares and cross-products, de�ned by

Sw =
NX
i=1

nX
j=1

(zij � �zi)(zij � �zi)T ; Sb = n
NX
i=1

(�zi � �z)(�zi � �z)T :

The same algebra applies as in Section 3.2, and we still �nd that �z is an unbiased
estimator of �, Sw=fN(n � 1)g is an unbiased estimator of ��2, while (9) gives
the unbiased estimator of �2.
The normal-distribution method is now readily applied by computing the

estimates �̂� and �̂
2
� for the incremental net bene�t at a given �. These are

�̂� = L��z and �̂
2
� = L��̂

2LT� , where L� is the vector (�;�1). So the CEAC is
estimated by P̂N (�) = �(�̂�=�̂�).
To derive the hybrid estimate, essentially the same Bayesian theory applies

for estimating yi, although now this is again in the form of matrix algebra. The
Bayesian posterior distribution of yi is (bivariate) normal with mean

ŷi = w�zi + (1� w)�

and variance
v =

1

n
w��2 :

Note, however, that w is now a 2� 2 matrix

w = (n���2 + ��2)�1n���2 ;

where ���2 and ��2 denote the matrix inverses of ��2 and �2.
It follows that the posterior distribution of the incremental net bene�t L�yi

for given � is normal with mean L�ŷi and variance L�vLT� . We can then apply
the method of Section 4.2 to get the hybrid estimate of the CEAC as

P̂H(�) =
1

N

NX
i=1

�

0@ L�ŷiq
L�vLT�

1A : (21)

4.5 Example 3: rheumatoid arthritis

This example concerns an application of the She¢ eld model for TNF inhibitor
treatments in rheumatoid arthritis [10][17][18]. There is no cure for this disease.
TNF inhibitors are a recent addition to the armoury of drugs used to ameliorate
symptoms in the short-term, and slow the longer-term progression of rheuma-
toid arthritis. The model examines the cost-e¤ectiveness of using these drugs
rather than the next best treatment (DMARDs). TNF inhibitors are currently
only indicated for patients with severe rheumatoid arthritis, who have failed to
respond to front-line therapies. The She¢ eld model is a patient-level simulation
model for the impact of treatment on this patient group. Characteristics for each
individual patient are simulated by sampling from a national registry of rheuma-
toid arthritis su¤erers. The long-term quality of life of each patient is simulated
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through models of initial improvement from treatment, longer term disease pro-
gression during treatment, duration of drug e¤ectiveness, patient lifetime and
days spent in hospital as functions of the patient�s simulated characteristics and
the speci�ed treatment. The uncertain model inputs are the coe¢ cients in each
function. Simulated costs comprise drug expenditure and associated monitoring
costs, as well as general treatment costs for the disease.
For this example, costs and bene�ts were both discounted at 3.5% per an-

num, and uncertainty about model input coe¢ cients was expressed through
multivariate normal joint distributions.
Initial exploration of the between patient variability in this model suggested

that it was much smaller than was experienced in the osteoporosis model. An
initial run using N = 100 randomly chosen input parameter combinations with
n = 100 patients per run obtained the following results. For the incremental
QALY output, the estimates of ��2 and �2 were respectively 0.8888 and 0.03232,
suggesting an optimal n = 1 + 0:8888=0:03232 = 29. For the incremental cost
output, the optimal value was estimated as n = 1+(6:112�108)=(1:248�107) =
49. On this basis, is was decided to make the main PSA run with n = 50 patients
per run. A sample size of N = 1000 was chosen.
The theory for two outputs was implemented fully for the main PSA. The

1000 runs yielded the following estimates.

�z =

�
1:2639
42594

�
; ��2 =

�
0:84532 18741
18741 6:0766� 108

�
;

�̂2 =

�
0:046619 332:19
332:19 1:1937� 107

�
:

On the basis of these estimates, the TNF inhibitor is estimated to produce 1.26
more QALYs, with a standard deviation of

p
0:046619 = 0:216, so we are very

sure that it is more e¤ective than the DMARD. It has an estimated incremental
cost of 42600 with a standard deviation of

p
1:1937� 107 = 3455, so again we

are very sure that is is more expensive. The question is whether it is cost-
e¤ective, at a range of willingness to pay values �. The estimated incremental
cost-e¤ectiveness ratio is 42594=1:2639 = 33700 UK pounds per QALY, so there
is some doubt over its cost-e¤ectiveness for the National Health Service. The
estimated CEAC using both methods is plotted in Figure 2 over the range
� 2 [20000; 50000].
The two curves are very close, but the normal-distribution curve P̂N (�) is

slightly �atter, implying less information about cost-e¤ectiveness. The esti-
mated probability that incremental net bene�t is positive is 0.52 at � = 33700
(the estimated ICER), but falls to 0.21 at � = 30000 and to e¤ectively zero at
� = 20000.
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Figure 2. Estimated CEAC for rheumatoid arthritis example using
normal-distribution (dashed line) and hybrid (solid line) methods.

4.6 Implementation

The rheumatoid arthritis example raises another question about implementing
this approach. The CEACs shown in Figure 2 are not only very similar but are
in fact almost identical to the one that would have been obtained by simply
using the proportion of positive sample mean net bene�t values L��zi for each �.
The reason is that although n = 49 was estimated as optimal for the incremental
cost output it is unnecessarily large for PSA of incremental net bene�ts in the
range of � of interest. For � around 33700, the corresponding values of ��2 and
�2 are estimated to be�

33700 �1
�� 0:84532 18741

18741 6:0766� 108
��

33700
�1

�
= 3:045� 108

and�
33700 �1

�� 0:046619 332:19
332:19 1:1937� 107

� �
33700
�1

�
= 4:249� 107 ;

so that the optimal n is only about 8. With 50 patients per run, the sample mean
net bene�t values L��zi are relatively accurate. As a result, the corresponding
Bayesian estimates L�ŷi are close to those means and their variances L�vLT�
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are small. Had we used n = 8 instead of n = 50, the simple CEAC estimate
based on the proportion of positive sample mean net bene�ts would have been
appreciably biased, making the methods of Section 4.4 necessary.
If the primary objective is, as in most PSA analyses of cost-e¤ectiveness, to

examine incremental net bene�t over a range of values of �, then for maximum
e¢ ciency n should be chosen on the basis of initial estimates according to the
above analysis, rather than by looking separately at incremental QALYs and
incremental costs as was done in the example. In e¤ect, this was how n was
derived for the osteoporosis model, and the runs obtained in that example could
have been used to estimate a CEAC for a range of � values around the assumed
£ 30,000/QALY.

5 Value of information

5.1 EVPI

In the context of decision making about which of a number of treatments to
adopt, an important measure of overall decision uncertainty is the expected
value of perfect information (EVPI). This is de�ned as the expected increase
in expected net bene�t that could be obtained if we were able to learn the
true values of all the uncertain model inputs x. For simplicity of exposition,
we assume that there are just two treatments to be compared, and the model
output is incremental net bene�t of treatment 2 relative to treatment 1.
EVPI is calculated in two stages, �rst �nding the expected incremental net

bene�t if no extra information is available, and then �nding the expectation if
we were to learn the true value of x. First, if no extra information is available
we should prefer treatment 2 to treatment 1 if and only if � > 0. The resulting
expected incremental net bene�t is

U = maxf�; 0g :

Second, if we can learn the true value of x, then we will choose treatment 2 if and
only if y(x) > 0, obtaining expected incremental net bene�t of maxfy(x); 0g.
However, prior to actually obtaining this information we do not know the value
of x, and the appropriate comparison with U is the expectation

U� = E [maxfy(X); 0g] :

Notice that we formally recognise that x is uncertain here by using the symbol
X. The expectation in U1 is with respect to the uncertainty in X. Finally, the
EVPI is the di¤erence

EVPI = U� � U ;

and it can be shown that this is necessarily non-negative. The larger the EVPI,
the more appreciable is the uncertainty in the choice of treatment.
It is usual to compute EVPI in cohort models by Monte Carlo sampling.

Given a suitably large number N of runs, U is estimated as maxf�y; 0g, and
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U� by 1
N

PN
i=1maxfyi; 0g. For patient-level models, the standard Monte Carlo

estimates are then given by

ÛS = maxf�z; 0g ; Û�S =
1

N

NX
i=1

maxf�zi; 0g ;

evaluated using a large number n of patients in each run. Now it is important
to recognise that because of the maximisation steps in these calculations both
estimators are biased (and indeed the usual estimate of U is biased in the case
of cohort models) [19]. Essentially, the bias arises from the fact that because of
the possibility of estimation errors in �z and �zi we are not certain whether the
corresponding true values � and y(xi) are positive, and the operation of taking
the maximum will tend to overestimate the true values of U and U�. Because
there is more uncertainty in each �zi than in �z, the bias is larger in U�, and so
the estimate of EVPI will be biased upwards. The answer to minimising these
biases is again to use large samples. Both N and n need to be large enough to
be almost certain whether � or y(xi) is positive.
Note that if the interest is simply in estimating U then the result of Section

3.1 applies and it is most e¢ cient to use n = 1. However, the standard Monte
Carlo method uses the same sampled inputs xi for both U and U�, and to
estimate U� accurately it is necessary to estimate each �(xi) accurately, and
hence we must use large n.

5.2 Partial EVPI

A measure of the decision uncertainty induced by uncertainty in a subset of the
model inputs is the so-called partial EVPI for those inputs. Let xI denote the
subset of inputs of interest, and let x�I denote the remaining inputs, so that
xI and x�I together partition x. If we were able to learn the true value of
xI before making a decision about which treatment to use, then the decision
would give utility maxf�(xI); 0g, where �(xI) is the expected incremental net
bene�t with respect to uncertainty in the remaining inputs x�I , conditional on
the revealed value of xI . Since this value is not known at the present time, it
is a random variable XI , and we need to evaluate the expectation with respect
to that uncertainty:

U I = E
�
maxf�(XI); 0g

�
: (22)

Then the partial EVPI for xI is U I � U .
As has been pointed out by Brennan et al [19], to evaluate this by Monte

Carlo, even in the case of a cohort model, requires a two-level simulation. In an
outer loop, we simulate many values of xI , then in an inner loop we simulate
many values of x�I for each simulated value of xI . The inner loop computes
�(xI) while the outer loop evaluates the expectation in (22). For a patient-
level simulation model, it now becomes optimal to use n = 1, because the inner
computation to evaluate �(xI) is analogous to the estimation of �, except that
we �x xI and only simulate x�I . The argument of Section 3.1 applies and we
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should use just one patient per run. In practice, this means that estimating a
partial EVPI for a patient-level model entails relatively little extra computation
beyond that needed to compute EVPI.

6 Discussion

6.1 Principal conclusions

We have presented methods to calculate the key PSA outputs using a patient-
level simulation model for cost-e¤ectiveness analysis. These will make it possible
to carry out PSA for many such models by the familiar and simple Monte
Carlo approach, where hitherto the computational demand was thought to be
prohibitive.
An important feature of this work has been the derivation of explicit sam-

ple size formulae, both for the standard Monte Carlo method and for the new
ANOVA method. In addition to simple formulae for estimating the PSA mean
� and variance �2, we have extended the theory to provide methods for estimat-
ing the cost-e¤ectiveness acceptability curve and measures of expected value of
information.
The remainder of this section discusses a variety of issues, including some

further extensions and alternative computation methods.

6.2 ICER

Until relatively recently, cost-e¤ectiveness analysis was almost exclusively based
on the incremental cost-e¤ectiveness ratio (ICER), with treatment 2 being
deemed more cost-e¤ective than treatment 1 if the ICER was less than �. There
are two reasons why we do not develop a PSA analysis based on the ICER here.
First, on a fundamental level, the claim that treatment 2 is more cost-e¤ective
if the ICER is less than � only works if treatment 2 is more e¤ective than
treatment 1. Otherwise, the inequality must be reversed [20]. The de�nition
based on incremental net bene�t is much cleaner. It also leads to much simpler
techniques for accounting for uncertainty, which is our second reason for not
analysing the ICER here. In the case of patient-level simulation models, the
ICER is not an average of patient-level ratios, and therefore all of the above
theory is inapplicable.

6.3 Gaussian process emulation

When the economic model is so computer-intensive that even the methods pre-
sented here are impractical, there is an even more e¢ cient methodology based
on Gaussian process emulation [21]. This is a mathematically more advanced
technique, and in the absence of user-friendly software is not accessible to most
practising health economists. Estimates of �, �2 and the CEAC can be calcu-
lated using the methods of Oakley and O�Hagan [22] and Stevenson et al [23],
while the theory is extended to EVPI by Oakley [24]. A similar approach has
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been proposed based on the more restrictive idea of �tting a response surface
to the model output instead of a Gaussian process [25].

6.4 Non-independent patients

The theory has been developed on the assumption that the sampled values zij for
patients j = 1; 2; : : : ; n are independent. Whilst this is true for many patient-
level simulation models, it is possible for the value obtained for one patient
to depend on those obtained for earlier patients. This will arise, for example,
when the simulation takes account of limited availability of resources, so that the
outcome for one patient may depend on the utilisation of resources by previous
patients in the simulation [26]. If patient outcomes are not independent, then a
more appropriate modelling approach is by discrete event simulation [27][28][29].
The essence of the assumption that patients are simulated independently is that
var(�zi) = �

2+��2=n. The same formula may be expected to apply to models with
interacting patients when the model is in equilibrium, because the variance of the
sample mean will still decline proportionally to 1=n. However, the interpretation
of ��2 will change, and it will need to be estimated di¤erently. This is a topic
for future research.

6.5 Unbalanced sampling and heterogeneity of patient-
level variance

We have assumed that the number of patients sampled in each run is the same,
but there are at least two reasons for considering generalising this to the case
when ni patients are sampled in run i. First, when �2i = �2(xi) varies sub-
stantially with the sampled input vector xi, it should be better to sample more
patients in runs where the patient-level variation is found to be larger. Notice
that in the ANOVA theory the optimal n e¤ectively implies making ��2=n equal
to �2. If there is substantial heterogeneity of patient-level variances, then we
conjecture that it would be more e¢ cient to choose nis to make �2i =ni equal to
�2 for each i.
Another situation where unequal nis will naturally arise is when an initial

estimate of k is found to be inaccurate. We have suggested setting n using
estimates of �2 and ��2 based on a small-scale initial sample. It would be sensible
to check this value by re-estimating �2 and ��2 part way through the main
sampling exercise. If it then seems that a di¤erent value of n should be used
the subsequent sampling can use the new value. This will lead to a combined
sample using two (or more, if further checks are applied) di¤erent values of n.
Some of the theory developed here for equal nis may be readily generalised

to unequal values, but again this is a topic for further research.

6.6 More than two treatments

Where we have referred to comparing treatments, we have developed methods
that apply only for two treatments. It is increasingly common to compare more
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than two treatments in an economic evaluation, and this is anther topic for
future research. For instance, instead of assuming that the output is incremental
net bene�t for treatment 2 versus treatment 1, we could handle many treatments
by considering as outputs the net bene�ts for each treatment separately, and by
generalising the ideas in Section 4.4 concerned with two outputs.
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Appendix: Further details

A.1 Optimal sample sizes

First, using the de�nitions of k = ��2=�2 and M = Nn we can rewrite (10) as

2�4
�
(n+ k)2

n(M � n) +
k2

nM(n� 1)

�
= 2�4

�
(M + k)2

M(M � n) +
k2

M(n� 1) � 1
�
:

To minimise this with respect to n for �xed M , we di¤erentiate with respect to
n to give

2�4
�
(M + k)2

M(M � n)2 �
k2

M(n� 1)2

�
: (23)

We then equate this to zero, giving

(n� 1)2(M + k)2 � k2(M � n)2 = 0 :

This is a quadratic equation in n which has two solutions, n = M+k+Mk
M+2k and n =

��M�k+Mk
M . It is straightforward to con�rm that the �rst of these, equation

(11), is the required solution, by di¤erentiating (23) again with respect to n and
checking that it is negative at n = M+k+Mk

M+2k .
With this choice of n, (10) reduces to

var(�̂2A) = 2�
4M + 4k(M + k)

M (M � 1) :

We now require to choose M so that var(�̂2A) � c22�4. Setting var(�̂2A) = c22�4
yields another quadratic equation, this time in M :

M(M � 1)c22 �M � 4k(M + k) = 0 :

The left hand side is negative at M = 0 and becomes positive for su¢ ciently
largeM , so there is a single positive solution, which we �nd to be equation (12).
Now suppose that we also wish to have var(�̂S) � c21�

2. Given the chosen
value of n and equation var(�̂S) = (�2n + ��2)=M , we now wish to solve the
equation

c21�
2 =

�2

M

�
M(1 + k) + k

M + 2k
+ k

�
;

which yields another quadratic equation for M :

c21M(M + 2k)�M(1 + 2k)� k(2k + 1) = 0

whose positive solution is

M =
1

2c21

�
1 + 2k � 2c21k +

q
1 + 4k + 4k2 + 4c41k

2

�
: (24)
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If we suppose that k is large and c21 small, then the square root is approximately
2k, and (24) is approximately 2k=c21. In the case where the output is incremental
net bene�t, we have argued in Section 2.2 that we should set c1 = c2=2, in
which case this equates to (13). Therefore, the same values (14) and (13) that
optimise the number of patients per run and achieve the desired accuracy for
estimating �2 will also achieve the associated accuracy for estimating �. Notice,
for instance, that the 95% intervals for � and � in Section 3.6 have approximately
the same width.

A.2 Construction of the population in Example 2

The population shown in Figure 1 is a large sample from the distribution of
a random variable Y constructed as follows. Let Z1 and Z2 be independent
random variables with the skew-normal density

f(z) = �(
p
2z)�(z=

p
2) ;

where � and � denote the density and distribution functions of the standard nor-
mal distribution. The skew-normal distribution was �rst described by O�Hagan
and Leonard [30] and more recently explored by Azzalini [31]. Then

Y = Z21 sign(Z1) + Z
2
2 sign(Z2) :
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