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Multivariate Elicitation 

 

Early versions of SHELF concentrated on eliciting expert knowledge about 

one uncertain quantity at a time, and this is the simplest and most 

studied elicitation task.  Eliciting probability distributions for two or more 

uncertain quantities together introduces additional complications unless 

the quantities can be considered independent.  In this document, we first 

define independence and discuss the implications for elicitation of 

dependence.  We then consider the possibility of removing dependence 

through elaboration.  However, when quantities are not independent 

elaboration to remove their dependence is not feasible, we must elicit the 

distribution for a group of quantities together, which is known as 

multivariate elicitation.  SHELF has templates for three multivariate 

elicitation methods, and in this document we discuss two of these that are 

implemented in the templates “SHELF 3 Copula” and “SHELF 3 

Dirichlet”.  A separate document, “Extension”, deals with ways of using 

the “SHELF 3 Extension” template. 

 

Independence 

A set of quantities are independent if learning additional information 

about one of them would not affect an expert’s judgements about the 

others.  Notice that independence is itself a subjective judgement.  For 

instance, two quantities X and Y may be independent for one expert but 

not for another. 

If all the experts judge that two quantities X and Y are independent then 

it is enough to elicit a probability distribution for each quantity 

separately.  We do not need to consider what is known about Y when 

eliciting a distribution for X, because knowledge about Y has no bearing on 

the experts’ judgements about X, and conversely we do not need to 

consider knowledge about X when eliciting their distribution for Y. 

If X and Y are not judged to be independent, then we can still elicit 

distributions for X and Y separately, but these marginal distributions are 

now not a complete description of the experts’ knowledge about X and Y.  

We also need to elicit how knowledge of one quantity would affect 

judgements about the other. 

To see why this is necessary, suppose that X and Y are two uncertain 

inputs to a risk model, and suppose that larger values of either X or Y lead 

to increased risk.  If X and Y are independent, then a large value of X does 

not make a large value of Y more or less likely, but this is not the case 

when we have dependence.  It may be that the experts judge that if X is 

large then Y is likely also to be large.  This is called positive dependence, 

and would imply an expectation of greater risk than would exist in the 

case of independence.  Conversely, negative dependence, i.e. larger values 
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of one quantity making large values of the other less likely, would imply 

less risk overall than the case of independence. 

In general, when some quantities are dependent, what is needed is their 

joint distribution.  Whereas the marginal distribution for a single quantity 

X specifies probabilities like P(X > 2) or P(20 < X < 24), the joint 

distribution for two quantities X and Y will specify probabilities like P(X > 

2 and Y > 3), P(20 < X < 24 and –1 < Y < 0) or P(X < Y).  With 

independence, joint probabilities are products of marginal probabilities, 

for instance P(X > 2 and Y > 3) = P(X > 2) × P(Y > 3), which is why it is 

sufficient to elicit only marginal distributions in this case.  Joint 

distributions are much more complex than marginal distributions, and in 

principle are therefore much more complex to elicit.   

 

Elaboration 

The idea of elaboration is introduced in the document “Definitions”, where 

its role is to facilitate more accurate elicitation of a distribution for a 

single QoI, by expressing it in terms of two or more quantities that may 

individually be easier for experts to make judgements about.  We now 

consider a broader definition of elaboration for the purposes of 

multivariate elicitation. 

Let X = (X1, X2, …) be a set of quantities of interest, which we suppose are 

dependent.  An elaboration of X expresses it in terms of another set of 

quantities Y = (Y1, Y2, …), so that formally each Xi is a function of Y.  

Given a joint distribution for Y, we can infer the joint distribution of X.  

The elaboration will be successful in facilitating the task of eliciting a 

distribution for X if the experts now judge the components of Y, i.e. Y1, Y2, 

…, to be independent. 

One approach to multivariate elicitation of dependent quantities, 

therefore, is to elaborate them in terms of new quantities that the experts 

judge to be independent.  The following examples will illustrate the 

technique. 

Example 1: Two treatment effects 

Suppose that a clinical trial is to be conducted in China to compare the 

effect of a new drug D with a comparator drug C for treating patients with 

a certain disease.  The quantities of interest are the mean effects of the 

two drugs, XD and XC.  Both quantities are uncertain for Chinese patients, 

although C is the standard treatment in Europe and North America, 

where there is substantial evidence regarding its mean effect.  Experts do 

not regard XD and XC as independent; for instance, if the effect XC in 

Chinese patients is higher than in European patients, this would increase 

the experts’ expectation of the new drug’s effect XD. 

If, however, we define YD = XD/XC to be the relative effect of drug D, 

relative to the comparator C, then the experts may regard this as 
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independent of XC.  Formally, we are expressing X = (XD, XC) in terms of Y 

= (YD, YC) by the equations YD = XD/XC and YC = XC.  Independence 

between YD and YC means that we can separately elicit distributions for 

these two quantities, and this will induce the required distribution of XD 

and XC.  In particular, larger values of XC = YC will lead to expectation of 

larger values of XD through the inverse relationship XD = YD × YC. 

Example 2: Tensile strengths 

Metal rods are available from five different manufacturers.  Their 

manufacturing techniques are different, and the rods they produce are 

likely to have somewhat different properties.  The quantities of interest 

are the mean tensile strengths X1, X2, X3, X4 and X5 of the rods from each 

manufacturer.  The experts judge these to be dependent in a similar way 

to the previous example – if we learnt the tensile strength X1 of rods from 

the first manufacturer, this would influence the experts’ judgements about 

X2, X3, X4 and X5.  For instance, if X1 is lower than expected, this would 

decrease the experts’ expectations for the other quantities. 

We could apply a similar elaboration approach to Example 1 if we have 

good knowledge of the mean tensile strength of rods from one 

manufacturer, perhaps because this has been the previous supplier. Then 

we could define this as the comparator, and consider the tensile strengths 

for the other manufacturers relative to this.   

However, suppose we cannot single out one manufacturer as a natural 

comparator in this way.  In this case we may elicit judgements about each 

of X1, X2, X3, X4 and X5 relative to an artificial or conceptual comparator 

X0.  For instance, we might define X0 to be the mean tensile strength of 

rods made by a typical or average manufacturer.  We thereby elaborate X 

= (X1, X2, X3, X4, X5) in terms of Y = (Y1, Y2, Y3, Y4, Y5, Y6), where Y1 = X1 – 

X0, …, Y5 = X5 – X0 and Y6 = X0.  Notice that instead of five quantities of 

interest we now have six to elicit judgements for, but the added 

dimensionality is a small price to pay if the experts now judge the 

components of Y to be independent.  With X0 defined in this way, the 

experts will judge that Y1 to Y5 could take both positive and negative 

values, perhaps with higher probabilities of positive values if the selection 

of the five candidate manufacturers implies that they are expected to 

produce stronger rods than a typical manufacturer. 

It is worth emphasising that the choice of elaboration is always a matter 

for the facilitator’s judgement, based on discussion with the project team 

and/or the experts themselves.  In this case, we might choose to express 

tensile strengths relative to X0 by ratios rather than differences if the 

experts would find it easier to make judgements about ratios.  

We might also use a different conceptual comparator.  For instance, X0 

might be the mean tensile strength of rods from a perfect or ideal 

manufacturer.  With the elaboration Y1 = X1/X0, …, Y5 = X5/X0 and Y6 = X0, 

the experts will give distributions for Y1 to Y5 such that they have zero 

probabilities of exceeding 1.   
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Example 3: Toxicity 

The toxicity of a river water pollutant is described by the proportion T(c) of 

salmon that die when exposed to the pollutant for 48 hours in 

concentration c.  The project team are interested in the function T(c) for a 

range of concentrations c.  In principle, this is a very large number of 

quantities of interest, and they are clearly dependent.  For instance, if 

T(c1) and T(c2) are two points on the function with c2 > c1, then we know 

that T(c2) must be greater than T(c1), so acquiring additional knowledge 

about any of these quantities must affect judgements about the others. 

In addition to dependence, this example has the added complication of the 

large, effectively infinite, number of quantities of interest, i.e. all points on 

the toxicity function T(c).  An elaboration will only be usable if the number 

of elements of Y is small enough, so that it is feasible to elicit expert 

judgements about all of these elements.  This implies the need for a 

dramatic reduction in dimensionality, which can only be achieved by 

making assumptions. 

A standard mathematical form for a toxicity function is the logistic 

function 

 T(c) = exp(Y2(c – Y1))/[1 + exp(Y2(c – Y1))] , 

Where Y1 and Y2 are the logistic parameters.  Y1 is the value of the 

concentration c at which 50% of the salmon will die, and is known as the 

LC50, while Y2 controls the rate at which toxicity is increasing around the 

LC50.  If we assume that T(c) has this logistic form, then we have an 

elaboration of the whole function in terms of just two new quantities, Y1 

and Y2.  The experts might judge these to be independent, and hence this 

becomes a usable elaboration. 

The assumption of a particular mathematical form for a function is 

obviously strong, and the assumed form must be determined through 

discussion with the experts.  A similar elaborative solution is needed for 

the variability problem discussed in the “Definitions” document.  There, 

the QoI was the value X taken by a quantity A for a random member of 

some population.  The proposed elaboration was in terms of the physical 

distribution of A values in the population, which is described by the 

proportion F(a) of members of the population with values of A less than or 

equal to a.  Since this is a function, we need to assume a suitable 

mathematical form for the physical distribution, for instance that the 

values of A follow a Gaussian probability distribution with parameters Y1 

equal to the population mean value and Y2 equal to the population 

variance. 

 

Gaussian copula method 

When it is not possible to find an elaboration of X such that the elements 

of Y are judged by all the experts to be independent, it is necessary to 

apply a specifically multivariate elicitation method.  The template 
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“SHELF 3 Copula” implements a method based on a form of multivariate 

distribution known as the Gaussian copula.  It is quite generally 

applicable, except that it cannot be used if the possible values of one QoI 

depend on the values of other QoIs.  An example of that kind of constraint 

is when the QoIs must sum to 1; the template “SHELF 3 Dirichlet” 

implements a method for this case. 

The copula method allows each QoI to have its own marginal distribution, 

which may be of any form.  So the template begins by eliciting a 

distribution for each QoI using the “SHELF 2 template”.  Then in order to 

elicit dependence between the QoIs, one extra judgement is required for 

each pair of QoIs.  This is the concordance probability, which is the 

probability that the true values of the two QoIs will both be on the same 

side of their elicited medians (i.e. both above their medians or both below).  

Ways to make and refine this judgement are explained in the slide set 

“Concordance Probability”. 

It is possible for the experts to specify combinations of concordance 

probabilities that are incompatible.  For instance, if they specify a high 

concordance probability for X1 and X2 and also for X1 and X3, then this 

means that these pairs of QoIs are strongly positively dependent.  High 

values of X1 are associated with high values of both X2 and X3, and there 

must be at least moderately strong positive dependence between X2 and 

X3.  If the experts were to give a low concordance probability for X2 and X3, 

this would be infeasible.  The “SHELF” software identifies incompatible 

combinations of judgements.  In this case the facilitator will provide 

feedback to the experts in order for them to make appropriate revisions of 

their judgements. 

Although such inconsistencies may be unusual in practice, the risk 

increases with increasing numbers of quantities.  In fact, the copula 

method is not really practical for more than a few quantities because of 

the large number of concordance probabilities that must be elicited (for 

instance, with just six quantities there are 15 pairs for which a 

concordance probability must be elicited, and this is already a large task 

for the experts).  Since the method is also relatively untried, we 

recommend using it with no more than 3 or 4 quantities. 

The Gaussian copula is a realistic and quite flexible method to elicit a 

general multivariate distribution.  The concordance probabilities are not 

easy judgements for the experts to make, but other measures of 

dependence are considerably more complex.  Although ideally one would 

elicit more judgements, to characterise dependence in more depth and 

detail, experts would not be able to make such judgements reliably. 

 

Dirichlet method 

The template “SHELF 3 Dirichlet” implements a method to elicit a 

multivariate distribution for a set of QoIs that are constrained to sum to 1.  

For example, the QoIs might be the proportions of households in a district 



The Sheffield Elicitation Framework  SHELF v4 

Multivariate elicitation            p6 

that have 0, 1, 2, 3, 4 or more than 4 televisions.  Each individual 

proportion could in principle take any value from 0 to 1, but the sum of all 

six proportions must be 1.  This tends to induce negative dependence.  For 

instance, if the proportion with 0 televisions is 0.3 (30%), then none of the 

other five proportions can exceed 0.7, and indeed their sum must be 0.7.  

The larger any one proportion is, the smaller the others must be, at least 

in total. 

The Dirichlet method requires each QoI to have a beta marginal 

distribution.  The template therefore begins by eliciting a distribution for 

each QoI, using the “SHELF 2” template, but with the constraint that the 

fitted distribution must in each case be beta. 

The template then fits a Dirichlet distribution to the elicited marginal 

distributions.  The Dirichlet family of distributions is much more 

restrictive than the Gaussian copula, and experts are not asked to make 

any additional judgements.  Indeed, the combination of elicited marginal 

distributions will almost certainly already be incompatible with the 

Dirichlet distribution.  The fitting process therefore identifies a compatible 

set of beta marginal distributions that is close to the elicited distributions, 

and the facilitator will provide feedback to the experts in order for them to 

assess whether the revised distributions are a reasonable representation 

of their opinions. 

Example 4: Bird abundance 

In this final example, the Dirichlet method is used after a preliminary 

elaboration.  The QoIs X1, X2 and X3 are the abundances (numbers per 

hectare) of birds of each of three woodland species in a particular forest.  

The experts may be expected to judge these three quantities to be 

dependent, but the dependence might be positive or negative.  If little is 

known about the total number of birds, of all species, that might be found 

in the forest, then large values of one species might suggest that the forest 

can support large bird populations, and so the numbers of other species 

might also be large – positive dependence.  However, if the experts had 

good knowledge of how large a total population the forest could support, 

then large numbers of one species will suggest low values of the others – 

negative dependence. 

A natural elaboration in this case is first to define X4 to be the abundance 

of all other species, so that T = X1 + X2 + X3 + X4 is the total abundance.  

Then we define Y1 = X1/T, Y2 = X2/T, Y3 = X3/T, Y4 = X4/T and Y5 = T.  Now 

Y1 to Y3 are the proportions of the three species and Y4 is the proportion of 

all other species, and so these four quantities must sum to 1 and we can 

elicit a joint distribution for them using the Dirichlet method.  They are of 

course still dependent, but the experts may judge that they are 

independent of the total abundance Y5.  Therefore, although the 

elaboration has not yielded a set of new quantities that are all 

independent, it has achieved the desired result of making the multivariate 

elicitation feasible, via a Dirichlet method for Y1 to Y4 and an independent 

elicitation of a (marginal) distribution for Y5. 


