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SUMMARY

The first and second moments of a multivariate-t distribution
truncated in some or all of its variates are expressed in terms
of the probability integral of the untruncated distribution. This
considerably reduces the amount of computation required to calculate

these moments.



1. INTRODUCTION

The multivariate-t distribution arises regularly in the Bayesian
analysis of the linear model with a single unknown variance. Introducing
inequality constraints on the parameters results in their prior and
posterior distributions each being a truncated multivariate-t: a
particular example is described in O'Hagan (1973). In problems concerning
the treatment of outliers or the selection of a population with the highest
mean we are often interested in the distribution of the maximum of a set
of multivariate—-t distributed variables: Afonja (1972) gives expressions
relating the moments of this distribution to those of the truncated
multivariate~t.

The amount of computation required to find moments of the truncated
multivariate-t, useful in both the above applications, is considerably
reduced by the formulae derived in this paper. The moments are expressed
in terms of the distribution function of the untruncated distribution,
for which a highly efficient algorithm already exists: Dutt (1975).

In addition the dimensionality of integration is reduced. Without
these formula the computation of the mean vector and covariance matrix
of a p-dimensional distribution would require 1+p+}ip(p+1) integrations
in p dimensions, whereas with the use of equations (14) and (16) this

is reduced to 2 integrations iny p dimensions, p in (p-1) dimensions and
ip(p-1) in (p-2) dimensioms.

We consider in this paper truncation on the right of each of the
variables X in a p-variate t distribution, i.e. -“KxiSui (€, = 52 AA =)
Since any linear transformation of the variables also has a multivariate-t
distribution, results for truncation on the left or more general planar
truncation are easily derived. In some cases it may be necessary to add

and subtract integrals obtained from these results, e.g. when a variable



is truncated on both the left and the right. The linear transformation
property also implies that we can eliminate location parameters, assuming
zero means in the untruncated distribution. In Section 3 we derive a
relationship between moments which is used in Section 4 as a reduction
formula to obtain the mean and covariance matrix. These are then
compared in Section 5 with known results in some special or limiting

cases.

2. DEFINITIONS AND NOTATION

A pxl vector random variable x has a multivariate-t
distribution with v degrees of freedom, zero mean and scale matrix

L if its density function is
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Its covariance matrix is in fact Ev/&-Z)}Eo We may equivalently regard X
as having conditionally a Normal distribution with zero mean and covariance
matrix h"§, given h, where vh has a X2 distribution with v degrees
of freedoms although we use this representation below, we cannot simply
integrate the moments of the truncated Normel distribution (see eog. Tallis
(1961)) with respect to h, for the truncation affects the distribution of
h, see section 5(e). Truncating x on the right by the pxi vector u

results in x having the density

fp(ﬁlv,g) = Fp(glv,g)"tp(flv,g), (1)

for -w<xiup (1 = 1,00.,p), end zero elsewhere. F, is the distribution

function of the multivariate-t distribution,

Fo(ulv,z) = f tp(flv,§)d§-

~®
o

We will be concerned with moments of the truncated distribution (1), and we

write the expectation of a general function w(x) as

Epiw{x)1v,2,u] = ;'} w(x)£, (x|v,2)dx. (2)
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The representation of the t distribution in terms of the Normal and o

distributions enables us to write (2) as
@

w(gs) h%(v+p)-1 exp{-%h(v+§'§'k)§d§dh, (3)
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Epiw(x)lvsz’ul = GP(U’V:Z)-’
A~ A ~ ~

where
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For manipulating quadratic forms it is necessary to introduce some
rather complicated notation. We write § for the inverse of 2; xi is
the i-th element of a vector x, and xij is the (1,3)~th element of a

matrix }5, a3 usual. In addition we define:

(a) x-i %o be the rest of x after removing xi, -

(v) X.ij to be the rest of x after removing x and Xj,

(c) X.i tobe the rest of X after removing the i-th row and column,

(d) X-ij to be the rest of X after removing the i-i;h and j-th rows
and columns,

(e) Em to be the rest of the i~th column of l(‘ after removing X i,

(£) X(j) to be the rest of the i-th and j-th columns of X after
removing X, Xij, Xji and xjj (a (n~2)x2 matrix if X

is nxm)o

For example

X419 X2
5 ]
X = ) 5(12) °
= Sl maeae. ) | .S
i(tz) ~ 25-12

We will require the standard identities

L]
x'Sx = syixy? + 2x1.§(L)5.i, + i.i,i-t,f—i.
{ ]
=o™'m? ¢ (i - mou i) S (xy - manT'z ) (5)
t
and §_E1 = 23'-1, - o 1! E(L\im . (6)0

3. THE REDUCTION FORMULA

We now derive a reduction formula similar to that obtained by Birnbaum

and Meyer (1953) for the truncated Normal distribution. Equation (3) may be



written
?CD
316 (u’v,Z)Eplw(x)lV:z uj = sblaj [W( )hé(v+p)-1e

37’:-%‘3? )
;h-z-(v+p)-2

= j J eXpi-%h(V‘l'fiLi—va—i’)}
~@® 0
U,

J {811 hxy exp(~ghsy i x2)} IxT ' w(x)exp(-hxi Sty *x.i)}dx.idhdx,
- bad ar ~ s

and using

i 1
J'au,hxwxp(%hsu,ﬁ)dxa = - exp(~zhsi1xf)
we integrate by parts to obtain

3t i.Gp (B:V s§)Ep {W(i) lV’E’B§ = Ey~E,,

where
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To evaluate E,; we assume that the value of the expression in square

brackets is zero at x; = -® . This will certainly be true if w(x)

is a polynomial in xi, as will be required in Section 4, and for a

wide range cof other functions. Writing

wlxi,u) = W(gg)lx.b )

xp{—zh(v+x'Z " x){dx ah

(7




then
ui® [ L¥
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exp[~hlvaoui T uf+(x i -woti T 2 (0) 'S L (v mwoni T B en ) ldx.ida

using (5). By & simple transformation of variables we may write this in

the form (3) so that

. 2veR) 1. fu(i),p-1,5"
T (v-m,u g, \ Gp-1 i-u( )sv 152-1}
B,y W(cismai' s w)lv-1,2-Lu®)], (8)
where
e -1 s vaoriilw? P '
u(i) = u-t = woLi's(y »i-i = === (T - il'Z 2w )
~ ~ ~ ~ V"1 s ~ -~

using (6)s Turning now to E, we £ind that it is composed of two terms:

E =E5 + Es (9)

where

2 =
2 it w() 10 9 2ol n(vax' s )l ax an

-
u
' ]
g ——=¢&
o “——8

e 2)/,_,}’2(!14-1’)-1%(“, -2,v_2 E)Ep{-—-(x., w(x)hv-Z 2;3}, (10)

®
4
Es =f (F sL_;xj)x{‘w(f)ha(v+p)_1exp{-1§h(v+§‘§,"x}dﬁdh
% 0 U

= ZSLJGP(E,V,E)EPEXE1XJW(1()IV,E,}\I} ! (11)
7 ~




Collecting together (7), (8), (9), (10) and (11), and using (4) for

each of the G functions, we eventually find that

L.
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e sLJEbixE‘XJW(f)Iv,E,u}
170 :
o . FpAnfy-2,0-27 4y Sl
" v-2 “wﬁh"ﬁ?‘l B g (M () v-2,555 2,u]
S e »
- w'g B, il iswoi i B w ) v-1,2-0,u6) §, {(12)
~ ~ A~ ~
where
w{v- ; . *
R RGN}
v(2mopy) \veorT uf T(v Fo(ulv,2)

(13)

Notice that the last term in (12) is an expectation with respect to the

conditional multivariate-t distribution of ff‘ given xi = uj.
4o FIRST AND SECOND MOMENTS

We will now use (12) to obtain the mean vector and covariance maetrix

of x. We first suppose that w(x) = xi, then
- d = 5
XL‘XJW(f) = % o (XL'W(f)) =0, W(£7L+ULGLL’§}Q JUL) = uge

Therefore equation {12) becomes, in this case,

p

suEp(x;Iv,B,u) = - Eie
J=1
Taking w(x) to be X;,Xzjec0sXp Successively the right-hand sides of
~
the resulting equations form the vector (-=£)s The left hand sides
-~

form SE (x|v,Z,u), vwhers E (x|v,Z,u) is the vector whose i-th element
~NuD N Y] ~p "~ A~

is Ep(x;iv,z,g), and is therefore the mean vector we require. Therefore

B (xlv,n,u) = - 25, (14)




where 5 is the px1 vector whose i-th element E£i; is given by (42D
Each element of (14) is negative because all the variables are truncated
on the right,

To find the covariance metrix we write w(s) =xix; for ell i and j
in turn. The resulting left-hand sides of equation (12) form the matrix

S E{xx' |v,§,3), where the pxp second-moment matrix ?,(?f,'lv’?g}}) has as

(i, j)-th element E’(xi,x_;lv,z,u).

Therefore
Y
" Lp==e Ok v =2 v-2§ oAy
3’(3% lv’E’E) T =2 Fpéulv,g.s : EE’ (15)

where the pxp matrix M has (i, j)-th element

[ up By & (1= 3)
"7 Lugo i gl I v-1,25,u)) (14 9)

end k=j if j< i, k= J1 if j> i. The expectation in this last
expression mey be evaluated using (14). When this is done, and after a
considerable amount of simple algebra, we may write (15) in the symmetric
form

v

el i, Sl e v 2% - % ~ Z6L (16)
5(4’\1 v’—v’~' e FP 3'1’,5 ~ s’

where the pxp matrix © has off-diagonal (i, j)-th element
Fa%d

1
zv=-1 - »
Fro i p=2 { |
) ) Fp ‘;"v,g ’ (i £ J)
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, -1 1% v
Sigy= 27, (01105015 °) ~ v=2 ° (;"
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Equation (17) is the natural analogue of (13), and (16) is a neater
expression than (15), but, since a computer will necessarily be employed
in practice, equation (15) may be more useful,

The covariance matrixiig is simply obtained by subtracting
‘EEE'Z from (15) or (16)., Higher moments may also be obtained from

(12), e.g. third-orderfmay be expressed in terms of those of first and

second orders,

5. SFECIAL CASES

We describe here, in paragraphs (b) to (e), some special cases in
which the calculations simplify, and in paragraph (a) an alternative

approach which was used to obtain the results of Section 4 .

(a) Alternative derivation. It is possible to obtain the moments by

differentiating the moment-generating function - an epproach which




(b)

(e)
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was used by Tallis (1961) for the truncated Normel. Equations (14)
(L 2
and (16) are obtained, but this derivation is stightdy more imvolved

than that used here.

The Normal case., As v tends to' infinity the t-distribution tends

to the Normal, and the results of Section 4 are found to approach
those of Tallis (1961) and of Birnbaum and Meyer (1953) for the

trunceted multivariate Normal.

The one-dimensional case. Formulae for the case p=1 were given

by O'Haegan (1973). Putting p=1 in (14) leads to the same result,

but in (16) it gives a different formula. We find directly that

A
L : P )
Bvax's'xiv,2) = (w-2)g5 « PR, (18)
P~ '~

and the expression in 0'Hagan (1973) for the second moment may be
obtained via the one-dimensional analogue of this. However,

from (15) or (16) we obtain

Ev+x'Z™'xiv,2,u) = v + tri Bl (v,2,0)

v
Ll F. v=2 v-2§ [V~ *
v o+ p°v-2 . Fp Blv,z t“"’ iEL»

There ssems to be no way of proving directly the equality of these

two expressions, but we may eliminate the ratio of F functions

between them to obtain an expression simpler than either:

P
1=t NI SRR R e
F}(f z 5‘1”5’3) T v=2 L. uigi.

=1

The first term of this corresponds to the untruncated cass.



(d)

(e)
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The semi-truncated case. When only some of the variates are truncated,

joe. some of the u; are plus infinity, then some simplification results.
IBE X is partitioned into X and Xp, u is similarly partitionred,
and all the elements of u, are infinite; then the distribution of

X4 is truncated multivariate-t in p; dimensions with v degrees

of freedom, zero mean anl scale matrix I, (using standard notation

for partitioning 5) truncated at yy; and the conditional

distribution of X2 given X4 is untruncated multivariate-t in p,
dimensions with (p,+v) degrees of freedom, mean EF‘EJ;‘E‘ and

scale matrix {(vnﬁ%,',"ic,)/(v-c-p,)}(gzz -gz,g,;‘g,z)o The results

of Section 4 were found to be consistent in this sense when some

uy's go to infinity (equation (18) is required).

The orthant case. The reason why moments cannot be obtained directly

from those of the truncated Normal is that, after truncation, the
marginal distribution of vh dis no longer X; in generals, An
exception is when each u; 1is either zero or plus infinity. The
expectation of an r-th order moment will be E(h'%r) times the

corresponding Normal moment, and when vh has the x; distribution
E(n ) = (30)%7 pis(v-)] ().

Since Fp(glv,g) does not depend on v for any p end I, the
results of Section 4 are found to agree with this in the case when
2ll u; are zero (the orthant case), and by virtue of (d) will

egree in all cases when vh has a x® @istribution.
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