Moments of the truncated multivariate-t distribution by A. O'Hagan (University of Warwick)* *Work done while the author was at the University of Dundee ## SUMMARY The first and second moments of a multivariate-t distribution truncated in some or all of its variates are expressed in terms of the probability integral of the untruncated distribution. This considerably reduces the amount of computation required to calculate these moments. ## 1. INTRODUCTION The multivariate-t distribution arises regularly in the Bayesian analysis of the linear model with a single unknown variance. Introducing inequality constraints on the parameters results in their prior and posterior distributions each being a truncated multivariate-t: a particular example is described in O'Hagan (1973). In problems concerning the treatment of outliers or the selection of a population with the highest mean we are often interested in the distribution of the maximum of a set of multivariate-t distributed variables: Afonja (1972) gives expressions relating the moments of this distribution to those of the truncated multivariate-t. The amount of computation required to find moments of the truncated multivariate-t, useful in both the above applications, is considerably reduced by the formulae derived in this paper. The moments are expressed in terms of the distribution function of the untruncated distribution, for which a highly efficient algorithm already exists: Dutt (1975). In addition the dimensionality of integration is reduced. Without these formulæ the computation of the mean vector and covariance matrix of a p-dimensional distribution would require 1+p+½p(p+1) integrations in p dimensions, whereas with the use of equations (14) and (16) this is reduced to 2 integrations in, p dimensions, p in (p-1) dimensions and ½p(p-1) in (p-2) dimensions. We consider in this paper truncation on the right of each of the variables x_i in a p-variate t distribution, i.e. $-\infty < x_i \le u_i$ (i = 1, 2, ..., p). Since any linear transformation of the variables also has a multivariate-t distribution, results for truncation on the left or more general planar truncation are easily derived. In some cases it may be necessary to add and subtract integrals obtained from these results, e.g. when a variable is truncated on both the left and the right. The linear transformation property also implies that we can eliminate location parameters, assuming zero means in the untruncated distribution. In Section 3 we derive a relationship between moments which is used in Section 4 as a reduction formula to obtain the mean and covariance matrix. These are then compared in Section 5 with known results in some special or limiting cases. ## 2. DEFINITIONS AND NOTATION A p×1 vector random variable x has a multivariate-t distribution with v degrees of freedom, zero mean and scale matrix v if its density function is $$t_{\mathbf{p}}(\mathbf{x}|\nu,\mathbf{\Sigma}) = \frac{\nu^{\frac{1}{2}\nu}}{\pi^{\frac{1}{2}\mathbf{p}}|\mathbf{\Sigma}|^{\frac{1}{2}}} \frac{\Gamma\{\frac{1}{2}(\nu+\mathbf{p})\}}{\Gamma(\frac{1}{2}\nu)} \quad (\nu + \mathbf{x}' \ \mathbf{\Sigma}^{-1}\mathbf{x})^{-\frac{1}{2}(\nu+\mathbf{p})}.$$ Its covariance matrix is in fact $\{\nu/(\nu-2)\}\Sigma$. We may equivalently regard x as having conditionally a Normal distribution with zero mean and covariance matrix $h^{-1}\Sigma$, given h, where ν h has a χ^2 distribution with ν degrees of freedoms although we use this representation below, we cannot simply integrate the moments of the truncated Normal distribution (see e.g. Tallis (1961)) with respect to h, for the truncation affects the distribution of h, see section 5(e). Truncating x on the right by the px1 vector y results in x having the density $$f_{p}(\underline{x}|\nu,\underline{\Sigma}) = F_{p}(\underline{u}|\nu,\underline{\Sigma})^{-1} t_{p}(\underline{x}|\nu,\underline{\Sigma}), \qquad (1)$$ for $-\infty < x_i \le u_i$ (i = 1,...,p), and zero elsewhere. F_p is the distribution function of the multivariate-t distribution, $$F_p(\underline{u}|\nu,\underline{\Sigma}) = \int_{-\infty}^{\mu} t_p(\underline{x}|\nu,\underline{\Sigma}) d\underline{x}.$$ We will be concerned with moments of the truncated distribution (1), and we write the expectation of a general function w(x) as $$\mathbf{E}_{\mathbf{p}}\{\mathbf{w}(\mathbf{x})|\nu,\Sigma,\mathbf{u}\} = \int_{-\infty}^{\mathbf{u}} \mathbf{w}(\mathbf{x})\mathbf{f}_{\mathbf{p}}(\mathbf{x}|\nu,\Sigma)d\mathbf{x}. \tag{2}$$ The representation of the t distribution in terms of the Normal and χ^2 distributions enables us to write (2) as $$\mathbb{E}_{\mathbf{p}}\{\mathbf{w}(\underline{x})|\nu,\underline{\Sigma},\underline{u}\} = \mathbb{G}_{\mathbf{p}}(\underline{u},\nu,\underline{\Sigma})^{-1} \int_{-\infty}^{u} \mathbf{w}(\underline{x}) \int_{\mathbf{h}^{\frac{1}{2}}}^{\mathbf{h}^{\frac{1}{2}}} (\nu+p)^{-1} \exp\{-\frac{1}{2}\mathbf{h}(\nu+\underline{x}',\underline{\Sigma}^{-\frac{1}{2}})\} d\underline{x} dh, \qquad (3)$$ where $$G_{p}(\underbrace{u,\nu,\Sigma}) = \int \int h^{\frac{1}{2}(\nu+p)-1} \exp\{-\frac{1}{2}h(\nu+\underline{x}'\Sigma^{-\frac{1}{2}})\} d\underline{x}dh$$ $$-\underline{\omega} 0$$ $$= \overline{h^{\frac{1}{2}p}}|\underline{\Sigma}|^{\frac{1}{2}} 2^{\frac{1}{2}(\nu+p)} \Gamma(\frac{1}{2}\nu) \nu^{-\frac{1}{2}\nu} F_{p}(\underline{u}|\nu,\underline{\Sigma}). \tag{4}$$ For manipulating quadratic forms it is necessary to introduce some rather complicated notation. We write S for the inverse of S; X_i is the i-th element of a vector X, and X_i ; is the (i,j)-th element of a matrix X, as usual. In addition we define: - (a) x-i to be the rest of x after removing xi, - (b) x_ij to be the rest of x after removing xi and xj, - (c) X to be the rest of X after removing the i-th row and column, - (d) X-ij to be the rest of X after removing the i-th and j-th rows and columns, - (e) X(i) to be the rest of the i-th column of X after removing Xi, - (f) $X_{(i,j)}$ to be the rest of the i-th and j-th columns of X after removing $x_{i,i}$, $x_{i,j}$, $x_{j,i}$ and $x_{j,j}$ (a $(n-2)\times 2$ matrix if X_{∞} is $n\times m$). For example We will require the standard identities $$x'Sx = silxi^{2} + 2xiS(i)x_{-i} + x_{-i}S_{-i}x_{-i}$$ $$= \sigma i i^{-1}xi^{2} + (x_{-i} - xi\sigma i)^{-1}S(i) S_{-i}(x_{-i} - xi\sigma i)^{-1}S(i)$$ and $$S_{-i} = S_{-i} - \sigma i i^{1}S(i)S(i)$$ (6). ## 3. THE REDUCTION FORMULA We now derive a reduction formula similar to that obtained by Birnbaum and Meyer (1953) for the truncated Normal distribution. Equation (3) may be written $$siiG_{p}(u,\nu,\Sigma)E_{p}\{w(x)|\nu,\Sigma,u\} = sii\int_{-\infty}^{\infty} \int_{w(x)}^{\infty} w(x)h^{\frac{1}{2}(\nu+p)-1}\exp\{-\frac{1}{2}h(\nu+x'\Sigma^{-1}x)\}dx dh$$ $$= \int_{-\infty}^{\infty} \int_{0}^{\frac{1}{2}(\nu+p)-2} \exp\{-\frac{1}{2}h(\nu+x':S-ix-i)\}$$ $$-\infty \int_{u_{t}}^{\infty} \{siihx_{t}\exp(-\frac{1}{2}hs_{t}ix_{t}^{2})\}\{x_{t}^{-1}w(x)\exp(-hx_{t}S_{t}^{\prime}i)|x_{t}^{-1}\}\}dx_{t}idhdx_{t},$$ and using $$\int s_{i,t} hx_{i,t} \exp(-\frac{1}{2}hs_{i,t}x_{i,t}^{2}) dx_{i,t} = -\exp(-\frac{1}{2}hs_{i,t}x_{i,t}^{2})$$ we integrate by parts to obtain $$\operatorname{stiG}_{p}(\underline{u},\nu,\underline{\Sigma})\operatorname{E}_{p}\left\{w(\underline{x})\mid\nu,\underline{\Sigma},\underline{u}\right\} = \operatorname{E}_{1}-\operatorname{E}_{2},\tag{7}$$ where $$E_{1} = \int_{-\infty}^{u_{-1}} \int_{h^{\frac{1}{2}}(v+p)^{-2}}^{\infty} \exp\{-\frac{1}{2}h(v+x_{-1}^{1}iS_{-1}x_{-1})\}$$ $$-\infty \quad 0$$ $[-\exp(-\frac{1}{2}hs_{i}x_{i}^{2})\{x_{i}^{-1}w(\underline{x})\exp(-hx_{i}\underline{S}(u)\underline{x}_{-i})\}]_{\infty}^{u_{i}}d\underline{x}_{-i}dh,$ $$E_{2} = \int_{-\infty}^{u_{1}} \int_{h^{\frac{1}{2}}(v+p)^{-2}}^{h^{\frac{1}{2}}(v+p)^{-2}} \exp\left\{-\frac{1}{2}h(v+x_{2}^{-1}(S_{-1}x_{2}^{-1}))\right\} \int_{-\infty}^{u_{1}} \left\{-\exp(-\frac{1}{2}hs_{1}x_{2}^{2})\right\} \times -\infty$$ $$\times \left\{ \frac{d}{dx_{i}} \left(x_{i}^{-1} w(x) \right) - h(S_{i}(x) x_{-i}) x_{i}^{-1} w(x) \right\} \exp\left(-hx_{i} S_{i}(x) x_{-i}\right) dx_{-i} dh dx_{i}.$$ To evaluate E_i we assume that the value of the expression in square brackets is zero at $x_i = -\infty$. This will certainly be true if w(x) is a polynomial in x_i , as will be required in Section 4, and for a wide range of other functions. Writing $$w(x_i, u_i) = w(x)|_{x_i = u_i}$$ then $$E_{1} = -\int_{0}^{u_{1}-1} \int_{0}^{u_{1}-1} w(x_{1}, u_{1}) h^{\frac{1}{2}(\nu+p)-2} \exp\{-\frac{1}{2}h(\nu+s_{1}, u_{1})^{\frac{1}{2}(\nu+p)-2} + 2u_{1} \sum_{i=1}^{\infty} (u_{i}^{2}+2u_{1} (u_{i}^{2}+2$$ $\exp[-\frac{1}{2}h\{\nu+\sigma_{i}^{-1}u_{i}^{2}+(x_{i}-u_{i}\sigma_{i}^{-1}\Sigma_{(i)})^{2}S_{-i}(x_{i}-u_{i}\sigma_{i}^{-1}\Sigma_{(i)})]dx_{i}dh$ using (5). By a simple transformation of variables we may write this in the form (3) so that $$E_{1} = -u\bar{t}^{4} \left(\frac{\nu - 1}{\nu + \sigma_{1}\bar{t}^{4}u_{1}^{2}} \right)^{\frac{1}{2}(\nu + p) - 1} G_{p-1} \left\{ \underline{u}(i), \nu - 1, \underline{\Sigma} - \underline{t}^{2} \right\}$$ $$E_{p-1} \left\{ w(\underline{x}_{-1} + u_{1}\sigma_{1}\bar{t}^{1}\underline{\Sigma}_{(1)}, u_{1}) \middle| \nu - 1, \underline{\Sigma} - \underline{t}^{2}, \underline{u}(i) \right\}, \quad (8)$$ where $$\underline{\mathbf{u}}(\mathbf{i}) = \underline{\mathbf{u}}_{-1} - \underline{\mathbf{u}}_{1} \sigma_{1} \overline{\mathbf{i}}^{1} \underline{\Sigma}(\mathbf{i}) , \underline{\Sigma}_{-1}^{**} = \frac{\nu_{1} \sigma_{1} \overline{\mathbf{i}}^{1} \underline{\mathbf{u}}_{1}^{2}}{\nu_{-1}} (\underline{\Sigma}_{-1} - \sigma_{1} \overline{\mathbf{i}}^{1} \underline{\Sigma}(\mathbf{i}) \underline{\Sigma}(\mathbf{i}) \underline{\Sigma}(\mathbf{i}))$$ using (6). Turning now to E2 we find that it is composed of two terms: $$E_2 = E_3 + E_4$$, (9) where $$E_{3} = -\int_{-\infty}^{u} \int_{0}^{\infty} \frac{d}{dx_{i}} \left\{ x_{i}^{-1} w(x) \right\} h^{\frac{1}{2}(\nu+p)-2} \exp \left\{ -\frac{1}{2} h(\nu + x^{*} \sum_{i=1}^{n} x_{i}) \right\} dx dh$$ $$= -\left\{ (\nu-2)/\nu \right\}^{\frac{1}{2}(\nu+p)-1} G_{p}(u,\nu-2,\frac{\nu}{\nu-2} \sum_{i=1}^{n} E_{p} \left\{ \frac{d}{dx_{i}} (x_{i}^{-1} w(x)) \right\} \nu-2,\frac{\nu}{\nu-2} \sum_{i=1}^{n} u_{i}^{-1} \right\}, \quad (10)$$ $$E_{4} = \int_{-\infty}^{u} \int_{0}^{\infty} \left(\sum_{j\neq i} s_{i,j} x_{j} \right) x_{i}^{-1} w(x) h^{\frac{1}{2}(\nu+p)-1} \exp \left\{ -\frac{1}{2} h(\nu + x^{*} \sum_{i=1}^{n-1} x_{i}^{-1} x_{i}^{-1} dx \right\} dx dh$$ $$= \sum_{j\neq i} s_{i,j} G_{p}(u,\nu,\sum_{i=1}^{n} E_{p}(x_{i}^{-1} x_{j} w(x)) \nu,\sum_{i=1}^{n} u_{i}^{-1} . \quad (11)$$ Collecting together (7), (8), (9), (10) and (11), and using (4) for each of the G functions, we eventually find that $$\sum_{j=1}^{p} s_{ij} \mathbb{E}_{p} \{x \mathcal{E}^{1} x_{j} w(x) | \nu, \Sigma, u\}$$ $$= \frac{\nu}{\nu - 2} \frac{F_{p}(\underline{u}|\nu - 2, \frac{\nu}{\nu - 2}\Sigma)}{F_{p}(\underline{u}|\nu, \Sigma)} E_{p}\{\frac{d}{dx_{l}}(x_{l}^{-1}w(\underline{x}))|\nu - 2, \frac{\nu}{\nu - 2}\Sigma, \underline{u}\}$$ $$- u_{l}^{-1}\xi_{l} E_{p-1}\{w(\underline{x}_{-l} + u_{l}\sigma_{l}^{-1}\Sigma_{(l)}, u_{l})|\nu - 1, \Sigma_{-l}^{-1}, u_{(l)}\}, \qquad (12)$$ where $$\xi_{i} = \frac{1}{\sqrt{(2\pi\sigma_{i})}} \cdot \left(\frac{\nu}{\nu + \sigma_{i}i^{1}u_{i}^{2}}\right)^{\frac{1}{2}(\nu-1)} \cdot \frac{\Gamma\left(\frac{1}{2}(\nu-1)\right)^{\frac{1}{2}\left(\frac{1}{2}\nu\right)}}{\Gamma\left(\frac{1}{2}\nu\right)} \cdot \frac{F_{p-1}\left(\frac{1}{2}(i)|\nu-1,\Sigma-i\right)}{F_{p}\left(\frac{1}{2}|\nu,\Sigma\right)}$$ (13) Notice that the last term in (12) is an expectation with respect to the conditional multivariate-t distribution of x_{-1} given $x_1 = u_1$. ## 4. FIRST AND SECOND MOMENTS We will now use (12) to obtain the mean vector and covariance matrix of x. We first suppose that $w(x) = x_i$, then $$x_{\overline{i}}^{1}x_{j}w(x) = x_{j}, \frac{d}{dx_{i}}(x_{\overline{i}}^{1}w(x)) = 0, w(x_{-i}+u_{i}\sigma_{i}\overline{i}^{1}\Sigma_{(i)},u_{i}) = u_{i}.$$ Therefore equation (12) becomes, in this case, $$\sum_{j=1}^{p} s_{ij} E_{p}(x_{j} | \nu, \Sigma, u) = -\xi_{i}.$$ Taking w(x) to be $x_1, x_2, ..., x_p$ successively the right-hand sides of the resulting equations form the vector $(-\xi)$. The left hand sides form $\sum_{x=p}^{\infty} (x|y, \xi, y)$, where $\sum_{x=p}^{\infty} (x|y, \xi, y)$ is the vector whose i-th element is $\sum_{x=p}^{\infty} (x_1|y, \xi, y)$, and is therefore the mean vector we require. Therefore $$\mathbb{E}_{p}(x|\nu,\xi,\underline{u}) = -\xi\xi, \tag{14}$$ where ξ is the px1 vector whose i-th element ξ_i is given by (13). Each element of (14) is negative because all the variables are truncated on the right. To find the covariance matrix we write $w(x) = x_i x_j$ for all i and j in turn. The resulting left-hand sides of equation (12) form the matrix $\sum_{n=0}^{\infty} E(xx^n | \nu, \Sigma, \mu)$, where the pxp second-moment matrix $E(xx^n | \nu, \Sigma, \mu)$ has as (i,j)-th element $E(x_i x_j | \nu, \Sigma, \mu)$. Therefore $$\mathbb{E}(\underbrace{xx^{1}|\nu,\Sigma,u}) = \frac{\nu}{\nu-2} \cdot \frac{\mathbb{F}_{p}(\underline{u}|\nu-2,\overline{\nu-2})}{\mathbb{F}_{p}(\underline{u}|\nu,\Sigma)} \cdot \Sigma - \Sigma M, \tag{15}$$ where the pxp matrix M has (i, j)-th element $$m_{i,j} = \begin{cases} u_i & \text{if } (i = j) \\ u_i & \text{for } i \neq \text{fil}_{p-1} \{x_k | \nu-1, \Sigma_{-i}^*, u(i)\} \end{cases} \quad (i \neq j)$$ and k = j if j < i, k = j-1 if j > i. The expectation in this last expression may be evaluated using (14). When this is done, and after a considerable amount of simple algebra, we may write (15) in the symmetric form $$\mathbb{E}(\mathbf{x}\mathbf{x}' \mid \nu, \mathbf{\Sigma}, \mathbf{u}) = \frac{\nu}{\nu - 2} \cdot \frac{\mathbb{F}_{\mathbf{p}}(\mathbf{u} \mid \nu - 2, \frac{\nu}{\nu - 2} \mathbf{\Sigma})}{\mathbb{F}_{\mathbf{p}}(\mathbf{u} \mid \nu, \mathbf{\Sigma})} \cdot \mathbf{\Sigma} - \mathbf{\Sigma} \mathbf{\Theta} \mathbf{\Sigma} , \qquad (16)$$ where the pxp matrix Θ has off-diagonal (i,j)-th element $$\theta_{i,j} = \frac{-1}{2\pi\sqrt{(\sigma_{i,i}\sigma_{j,j} - \sigma_{i,j})^2}} \cdot \frac{\nu}{\nu - 2} \cdot \left(\frac{\nu}{\nu}\right)^{\frac{1}{2}\nu - 1} \cdot \frac{F_{p-2}\{u(i,j)|\nu - 2, \xi - i,j\}}{F_{p}(u|\nu,\xi)}, \quad (i \neq j)$$ $$(17)$$ where $$v^* = v + \begin{pmatrix} (u_i, u_j) & \sigma_{ii} & \sigma_{ij} \end{pmatrix}^{-1} \begin{pmatrix} u_i \\ \sigma_{ij} & \sigma_{jj} \end{pmatrix}^{-1} \begin{pmatrix} u_i \\ u_j \end{pmatrix},$$ $$u(i,j) = u_{ij} - \sum_{ij} \left(\begin{array}{c} \sigma_{ij} & \sigma_{ij} \\ \sigma_{ij} & \sigma_{jj} \end{array} \right)^{-1} \left(\begin{array}{c} u_i \\ u_j \end{array} \right),$$ $$\Sigma_{-i,j} = \frac{\nu^{**}}{\nu - 2} \left(\sum_{i,j} - \sum_{i,j} (i,j) \begin{pmatrix} \sigma_{i,i} & \sigma_{i,j} \end{pmatrix}^{-1} + \sum_{i,j} (i,j) \right),$$ and i-th diagonal element $$\theta_{ii} = u_i \sigma_i \bar{i}^i \xi_i - \sigma_i \bar{i}^i \sum_{j \neq i} \sigma_{ij} \theta_{ij}$$ Equation (17) is the natural analogue of (13), and (16) is a neater expression than (15), but, since a computer will necessarily be employed in practice, equation (15) may be more useful. The covariance matrix x is simply obtained by subtracting \[\sum_{\text{cond}} \sum_{\t #### 5. SPECIAL CASES We describe here, in paragraphs (b) to (e), some special cases in which the calculations simplify, and in paragraph (a) an alternative approach which was used to obtain the results of Section 4. (a) Alternative derivation. It is possible to obtain the moments by differentiating the moment-generating function - an approach which was used by Tallis (1961) for the truncated Normal. Equations (14) and (16) are obtained, but this derivation is slightly more involved than that used here. - (b) The Normal case. As ν tends to infinity the t-distribution tends to the Normal, and the results of Section 4 are found to approach those of Tallis (1961) and of Birnbaum and Meyer (1953) for the truncated multivariate Normal. - (c) The one-dimensional case. Formulae for the case p=1 were given by O'Hagan (1973). Putting p=1 in (14) leads to the same result, but in (16) it gives a different formula. We find directly that $$E(\nu + \mathbf{x}^{\dagger} \boldsymbol{\Sigma}^{-1} \mathbf{x} | \nu, \boldsymbol{\Sigma}, \boldsymbol{u}) = (\mathbf{p} + \nu - 2) \cdot \frac{\nu}{\nu - 2} \cdot \frac{F_{\mathbf{p}}(\boldsymbol{u} | \nu - 2, \nu - 2^{-})}{F_{\mathbf{p}}(\boldsymbol{u} | \nu, \boldsymbol{\Sigma})}, \qquad (18)$$ and the expression in 0'Hagan (1973) for the second moment may be obtained via the one-dimensional analogue of this. However, from (15) or (16) we obtain $$\begin{split} \mathbb{E}(\nu + \underline{x}, \underline{\Sigma}^{-1} \underline{x} | \nu, \underline{\Sigma}, \underline{u}) &= \nu + \operatorname{tr} \underline{\Sigma}^{-1} \underline{\mathbb{E}}(\underline{x} \underline{x}, \underline{\nu}, \underline{\Sigma}, \underline{u}) \\ &= \nu + p \cdot \frac{\nu}{\nu - 2} \cdot \frac{F_{\mathbf{p}}(\underline{u} | \nu - 2, \frac{\nu}{\nu - 2} \underline{\Sigma})}{F_{\mathbf{p}}(\underline{u} | \nu, \underline{\Sigma})} - \sum_{i=1}^{p} u_{i} \xi_{i}, \end{split}$$ There seems to be no way of proving directly the equality of these two expressions, but we may eliminate the ratio of F functions between them to obtain an expression simpler than either: $$\mathbb{E}(\mathbf{x}^{1} \boldsymbol{\Sigma}^{-1} \mathbf{x} | \nu, \boldsymbol{\Sigma}, \boldsymbol{u}) = \mathbf{p} \cdot \frac{\nu}{\nu - 2} - \frac{\mathbf{p} + \nu - 2}{\nu - 2} \sum_{i=1}^{p} \mathbf{u}_{i} \boldsymbol{\xi}_{i}.$$ The first term of this corresponds to the untruncated case. - (d) The semi-truncated case. When only some of the variates are truncated, i.e. some of the ui are plus infinity, then some simplification results. If x is partitioned into x₁ and x₂, u is similarly partitioned, and all the elements of u₂ are infinite; then the distribution of x₁ is truncated multivariate-t in p₁ dimensions with ν degrees of freedom, zero mean and scale matrix Σ₁₁ (using standard notation for partitioning Σ) truncated at u₁; and the conditional distribution of x₂ given x₁ is untruncated multivariate-t in p₂ dimensions with (p₁+ν) degrees of freedom, mean Σ₂₁Σ₁⁻¹x₁ and scale matrix {(ν+x₁¹Σ₁⁻¹x₁)/(ν+p₁)}(Σ₂₂ Σ₂₁Σ₁⁻¹Σ₁₂). The results of Section 4 were found to be consistent in this sense when some u₁'s go to infinity (equation (18) is required). - (e) The orthant case. The reason why moments cannot be obtained directly from those of the truncated Normal is that, after truncation, the marginal distribution of νh is no longer χ^2_{ν} in general. An exception is when each u_i is either zero or plus infinity. The expectation of an r-th order moment will be $E(h^{\frac{1}{2}r})$ times the corresponding Normal moment, and when νh has the χ^2_{ν} distribution $$E(h^{-\frac{1}{2}r}) = (\frac{1}{2}\nu)^{\frac{1}{2}r} P\{\frac{1}{2}(\nu-r)\}/\Gamma(\frac{1}{2}\nu).$$ Since $F_p(0|\nu,\Sigma)$ does not depend on ν for any p and Σ , the results of Section 4 are found to agree with this in the case when all u_i are zero (the orthant case), and by virtue of (d) will agree in all cases when ν h has a χ^2 distribution. #### REFERENCES - [1] AFONJA, B. (1972). The moments of the maximum of correlated normal and t-variates. J.R. Statist. Soc. B, 34, 251-262. - [2] BIRNBAUM, Z.W. and MEYER, P.L. (1953). On the effect of truncation in some or all coordinates of a multinormal population. J. Ind. Soc. Agric. Stats. 5, 17-28. - [3] DUTT, J.E. (1975). On computing the probability integral of a general multivariate t. Biometrika 62, 201-5. - [4] O'HAGAN, A. (1973). Bayes estimation of a convex quadratic. Biometrika 60, 565-571. - [5] TALLIS, G.M. (1961). The moment generating function of the truncated multi-normal distribution. J.R. Statist. Soc. B, 23, 223-229.